• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of an electromagnetic vibration energy harvester for structural health monitoring of bridges employing wireless sensor networks

Dierks, Eric Carl 05 October 2011 (has links)
Energy harvesting is playing an increasingly important role in supplying power to monitoring and automation systems such as structural health monitoring using wireless sensor networks. This importance is most notable when the structures to be monitored are in rural, hazardous, or limited access environments such as busy highway bridges where traffic would be greatly disrupted during maintenance, inspection, or battery replacement. This thesis provides an overview of energy harvesting technologies and details the design, prototyping, testing, and simulation of an energy harvester which converts the vibrations of steel highway bridges into stored electrical energy through the use of a translational electromagnetic generator, to power a wireless sensor network for bridge structural health monitoring. An analysis of bridge vibrations, the use of nonlinear and linear harvester compliance, resonant frequency tuning, and bandwidth widening to maximize the energy harvested is presented. The design approach follows broad and focused background research, functional analysis, broad and focused concept generation and selection, early prototyping, parametric modeling and simulation, rapid prototyping with selective laser sintering, and laboratory testing with replicated bridge vibration. The key outcomes of the work are: a breadth of conceptual designs, extensive literature review, a prototype which harvests an average of 80µW under bridge vibration, a prototype which provides quick assembly, mounting and tuning, and the conclusion that a linear harvester out performs a nonlinear harvester with stiffening magnetic compliance for aperiodic vibrations such as those from highway bridges. / text
2

Innovative energy harvesting technology for wireless bridge monitoring systems

Weaver, Jason Michael 26 October 2011 (has links)
Energy harvesting is a promising and evolving field of research capable of supplying power to systems in a broad range of applications. In particular, the ability to gather energy directly from the environment without human intervention makes energy harvesting an excellent option for powering autonomous sensors in remote or hazardous locations. This dissertation examines the possibility of using energy harvesting in new and innovative ways to power wireless sensor nodes placed in the substructures of highway bridges for structural health monitoring. Estimates for power requirements are established, using a wireless sensor node from National Instruments as an example system. Available power in a bridge environment is calculated for different energy sources, including solar radiation, wind, and vibration from traffic. Feasibility of using energy harvesting in such an application is addressed for both power availability and cost as compared with grid power or primary batteries. An in-depth functional analysis of existing energy-harvesting systems is also presented, with insights into where innovation would be most beneficial in future systems. Finally, the development of a suite of complementary energy-harvesting devices is described. Because conditions on bridges may vary, multiple solutions involving different energy domains are desired, with the end user able to select the harvester most appropriate for the specific installation. Concept generation techniques such as mind-mapping and 6-3-5 (C-Sketch) are used to produce a wide variety of concepts, from which several promising concept variants are selected. The continued development for one concept, which harvests vibration using piezoelectric materials, is described. Analytical modeling is presented for static and dynamic loading, as well as predicted power generation. Two proof-of-concept prototypes are built and tested in laboratory conditions. Through the development of this prototype, it is shown that the example wireless sensor node can successfully be powered through energy harvesting, and insights are shared concerning the situations where this and other energy harvesters would be most appropriate. / text

Page generated in 0.1223 seconds