Spelling suggestions: "subject:"view byelection"" "subject:"view dielection""
1 |
Beyond relational: a database architecture and federated query optimization in a multi-modal healthcare environmentHylock, Ray Hales 01 May 2013 (has links)
Over the past thirty years, clinical research has benefited substantially from the adoption of electronic medical record systems. As deployment has increased, so too has the number of researchers seeking to improve the overall analytical environment by way of tools and models. Although much work has been done, there are still many uninvestigated areas; two of which are explored in this dissertation.
The first pertains to the physical storage of the data itself. There are two generally accepted storage models: relational and entity-attribute-value (EAV). For clinical data, EAV systems are preferred due to their natural way of managing many-to-many relationships, sparse attributes, and dynamic processes along with minimal conversion effort and reduction in federation complexities. However, the relational database management systems on which they are implemented, are not intended to organize and retrieve data in this format; eroding their performance gains. To combat this effect, we present the foundation for an EAV Database Management System (EDBMS). We discuss data conversion methodologies, formulate the requisite metadata and partitioned type-sensing index structures, and provide detailed runtime and experimental analysis with five extant methods. Our results show that the prototype, EAVDB, reduces space and conversion requirements while enhancing overall query performance.
The second topic concerns query performance in a federated environment. One method used to decrease query execution time, is to pre-compute and store "beneficial" queries (views). The View Selection Problem (VSP) identifies these views subject to resource constraints. A federated model, however, has yet to be developed. In this dissertation, we submit three advances in view materialization. First, a more robust optimization function, the Minimum-Maintenance View Selection Problem (MMVSP), is derived by combining existing approaches. Second, the Federated View Selection Problem (FVSP), built upon the MMVSP, and federated data cube lattice are formalized. The FVSP allows for multiple querying nodes, partial and full materialization, and data propagation constriction. The latter two are shown to greatly reduce the overall number of valid solutions within the solution space and thus a novel, multi-tiered approach is given. Lastly, EAV materialization, which is introduced in this dissertation, is incorporated into an expanded, multi-modal variant of the FVSP. As models and heuristics for both the federated and EAV VSP, to the best of our knowledge, do not exist, this research defines two new branches of data warehouse optimization. Coupled with our EDBMS design, this dissertation confronts two main challenges associated with clinical data warehousing and federation.
|
2 |
Importance-driven algorithms for scientific visualizationBordoloi, Udeepta 13 July 2005 (has links)
No description available.
|
3 |
Scalable view-based techniques for web data : algorithms and systemsKatsifodimos, Asterios 03 July 2013 (has links) (PDF)
XML was recommended by W3C in 1998 as a markup language to be used by device- and system-independent methods of representing information. XML is nowadays used as a data model for storing and querying large volumes of data in database systems. In spite of significant research and systems development, many performance problems are raised by processing very large amounts of XML data. Materialized views have long been used in databases to speed up queries. Materialized views can be seen as precomputed query results that can be re-used to evaluate (part of) another query, and have been a topic of intensive research, in particular in the context of relational data warehousing. This thesis investigates the applicability of materialized views techniques to optimize the performance of Web data management tools, in particular in distributed settings, considering XML data and queries. We make three contributions.We first consider the problem of choosing the best views to materialize within a given space budget in order to improve the performance of a query workload. Our work is the first to address the view selection problem for a rich subset of XQuery. The challenges we face stem from the expressive power and features of both the query and view languages and from the size of the search space of candidate views to materialize. While the general problem has prohibitive complexity, we propose and study a heuristic algorithm and demonstrate its superior performance compared to the state of the art.Second, we consider the management of large XML corpora in peer-to-peer networks, based on distributed hash tables (or DHTs, in short). We consider a platform leveraging distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. This thesis has contributed important scalability oriented optimizations, as well as a comprehensive set of experiments deployed in a country-wide WAN. These experiments outgrow by orders of magnitude similar competitor systems in terms of data volumes and data dissemination throughput. Thus, they are the most advanced in understanding the performance behavior of DHT-based XML content management in real settings.Finally, we present a novel approach for scalable content-based publish/subscribe (pub/sub, in short) in the presence of constraints on the available computational resources of data publishers. We achieve scalability by off-loading subscriptions from the publisher, and leveraging view-based query rewriting to feed these subscriptions from the data accumulated in others. Our main contribution is a novel algorithm for organizing subscriptions in a multi-level dissemination network in order to serve large numbers of subscriptions, respect capacity constraints, and minimize latency. The efficiency and effectiveness of our algorithm are confirmed through extensive experiments and a large deployment in a WAN.
|
4 |
Data Warehouse Operational Design: View Selection and Performance SimulationAGRAWAL, VIKAS R. 09 June 2005 (has links)
No description available.
|
5 |
Scalable view-based techniques for web data : algorithms and systems / Techniques efficaces basées sur des vues matérialisées pour la gestion des données du Web : algorithmes et systèmesKatsifodimos, Asterios 03 July 2013 (has links)
Le langage XML, proposé par le W3C, est aujourd’hui utilisé comme un modèle de données pour le stockage et l’interrogation de grands volumes de données dans les systèmes de bases de données. En dépit d’importants travaux de recherche et le développement de systèmes efficace, le traitement de grands volumes de données XML pose encore des problèmes des performance dus à la complexité et hétérogénéité des données ainsi qu’à la complexité des langages courants d’interrogation XML. Les vues matérialisées sont employées depuis des décennies dans les bases de données afin de raccourcir les temps de traitement des requêtes. Elles peuvent être considérées les résultats de requêtes pré-calculées, que l’on réutilise afin d’éviter de recalculer (complètement ou partiellement) une nouvelle requête. Les vues matérialisées ont fait l’objet de nombreuses recherches, en particulier dans le contexte des entrepôts des données relationnelles.Cette thèse étudie l’applicabilité de techniques de vues matérialisées pour optimiser les performances des systèmes de gestion de données Web, et en particulier XML, dans des environnements distribués. Dans cette thèse, nos apportons trois contributions.D’abord, nous considérons le problème de la sélection des meilleures vues à matérialiser dans un espace de stockage donné, afin d’améliorer la performance d’une charge de travail des requêtes. Nous sommes les premiers à considérer un sous-langage de XQuery enrichi avec la possibilité de sélectionner des noeuds multiples et à de multiples niveaux de granularités. La difficulté dans ce contexte vient de la puissance expressive et des caractéristiques du langage des requêtes et des vues, et de la taille de l’espace de recherche de vues que l’on pourrait matérialiser.Alors que le problème général a une complexité prohibitive, nous proposons et étudions un algorithme heuristique et démontrer ses performances supérieures par rapport à l’état de l’art.Deuxièmement, nous considérons la gestion de grands corpus XML dans des réseaux pair à pair, basées sur des tables de hachage distribuées. Nous considérons la plateforme ViP2P dans laquelle des vues XML distribuées sont matérialisées à partir des données publiées dans le réseau, puis exploitées pour répondre efficacement aux requêtes émises par un pair du réseau. Nous y avons apporté d’importantes optimisations orientées sur le passage à l’échelle, et nous avons caractérisé la performance du système par une série d’expériences déployées dans un réseau à grande échelle. Ces expériences dépassent de plusieurs ordres de grandeur les systèmes similaires en termes de volumes de données et de débit de dissémination des données. Cette étude est à ce jour la plus complète concernant une plateforme de gestion de contenus XML déployée entièrement et testée à une échelle réelle.Enfin, nous présentons une nouvelle approche de dissémination de données dans un système d’abonnements, en présence de contraintes sur les ressources CPU et réseau disponibles; cette approche est mise en oeuvre dans le cadre de notre plateforme Delta. Le passage à l’échelle est obtenu en déchargeant le fournisseur de données de l’effort de répondre à une partie des abonnements. Pour cela, nous tirons profit de techniques de réécriture de requêtes à l’aide de vues afin de diffuser les données de ces abonnements, à partir d’autres abonnements.Notre contribution principale est un nouvel algorithme qui organise les vues dans un réseau de dissémination d’information multi-niveaux ; ce réseau est calculé à l’aide d’outils techniques de programmation linéaire afin de passer à l’échelle pour de grands nombres de vues, respecter les contraintes de capacité du système, et minimiser les délais de propagation des information. L’efficacité et la performance de notre algorithme est confirmée par notre évaluation expérimentale, qui inclut l’étude d’un déploiement réel dans un réseau WAN. / XML was recommended by W3C in 1998 as a markup language to be used by device- and system-independent methods of representing information. XML is nowadays used as a data model for storing and querying large volumes of data in database systems. In spite of significant research and systems development, many performance problems are raised by processing very large amounts of XML data. Materialized views have long been used in databases to speed up queries. Materialized views can be seen as precomputed query results that can be re-used to evaluate (part of) another query, and have been a topic of intensive research, in particular in the context of relational data warehousing. This thesis investigates the applicability of materialized views techniques to optimize the performance of Web data management tools, in particular in distributed settings, considering XML data and queries. We make three contributions.We first consider the problem of choosing the best views to materialize within a given space budget in order to improve the performance of a query workload. Our work is the first to address the view selection problem for a rich subset of XQuery. The challenges we face stem from the expressive power and features of both the query and view languages and from the size of the search space of candidate views to materialize. While the general problem has prohibitive complexity, we propose and study a heuristic algorithm and demonstrate its superior performance compared to the state of the art.Second, we consider the management of large XML corpora in peer-to-peer networks, based on distributed hash tables (or DHTs, in short). We consider a platform leveraging distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. This thesis has contributed important scalability oriented optimizations, as well as a comprehensive set of experiments deployed in a country-wide WAN. These experiments outgrow by orders of magnitude similar competitor systems in terms of data volumes and data dissemination throughput. Thus, they are the most advanced in understanding the performance behavior of DHT-based XML content management in real settings.Finally, we present a novel approach for scalable content-based publish/subscribe (pub/sub, in short) in the presence of constraints on the available computational resources of data publishers. We achieve scalability by off-loading subscriptions from the publisher, and leveraging view-based query rewriting to feed these subscriptions from the data accumulated in others. Our main contribution is a novel algorithm for organizing subscriptions in a multi-level dissemination network in order to serve large numbers of subscriptions, respect capacity constraints, and minimize latency. The efficiency and effectiveness of our algorithm are confirmed through extensive experiments and a large deployment in a WAN.
|
6 |
A Declarative Approach to Modeling and Solving the View Selection Problem / Une approche déclarative pour la modélisation et la résolution du problème de la sélection de vues à matérialiserMami, Imene 15 November 2012 (has links)
La matérialisation de vues est une technique très utilisée dans les systèmes de gestion bases de données ainsi que dans les entrepôts de données pour améliorer les performances des requêtes. Elle permet de réduire de manière considérable le temps de réponse des requêtes en pré-calculant des requêtes coûteuses et en stockant leurs résultats. De ce fait, l'exécution de certaines requêtes nécessite seulement un accès aux vues matérialisées au lieu des données sources. En contrepartie, la matérialisation entraîne un surcoût de maintenance des vues. En effet, les vues matérialisées doivent être mises à jour lorsque les données sources changent afin de conserver la cohérence et l'intégrité des données. De plus, chaque vue matérialisée nécessite également un espace de stockage supplémentaire qui doit être pris en compte au moment de la sélection. Le problème de choisir quelles sont les vues à matérialiser de manière à réduire les coûts de traitement des requêtes étant donné certaines contraintes tel que l'espace de stockage et le coût de maintenance, est connu dans la littérature sous le nom du problème de la sélection de vues. Trouver la solution optimale satisfaisant toutes les contraintes est un problème NP-complet. Dans un contexte distribué constitué d'un ensemble de noeuds ayant des contraintes de ressources différentes (CPU, IO, capacité de l'espace de stockage, bande passante réseau, etc.), le problème de la sélection des vues est celui de choisir un ensemble de vues à matérialiser ainsi que les noeuds du réseau sur lesquels celles-ci doivent être matérialisées de manière à optimiser les coût de maintenance et de traitement des requêtes.Notre étude traite le problème de la sélection de vues dans un environnement centralisé ainsi que dans un contexte distribué. Notre objectif est de fournir une approche efficace dans ces contextes. Ainsi, nous proposons une solution basée sur la programmation par contraintes, connue pour être efficace dans la résolution des problèmes NP-complets et une méthode puissante pour la modélisation et la résolution des problèmes d'optimisation combinatoire. L'originalité de notre approche est qu'elle permet une séparation claire entre la formulation et la résolution du problème. A cet effet, le problème de la sélection de vues est modélisé comme un problème de satisfaction de contraintes de manière simple et déclarative. Puis, sa résolution est effectuée automatiquement par le solveur de contraintes. De plus, notre approche est flexible et extensible, en ce sens que nous pouvons facilement modéliser et gérer de nouvelles contraintes et mettre au point des heuristiques pour un objectif d'optimisation.Les principales contributions de cette thèse sont les suivantes. Tout d'abord, nous définissons un cadre qui permet d'avoir une meilleure compréhension des problèmes que nous abordons dans cette thèse. Nous analysons également l'état de l'art des méthodes de sélection des vues à matérialiser en en identifiant leurs points forts ainsi que leurs limites. Ensuite, nous proposons une solution utilisant la programmation par contraintes pour résoudre le problème de la sélection de vues dans un contexte centralisé. Nos résultats expérimentaux montrent notre approche fournit de bonnes performances. Elle permet en effet d'avoir le meilleur compromis entre le temps de calcul nécessaire pour la sélection des vues à matérialiser et le gain de temps de traitement des requêtes à réaliser en matérialisant ces vues. Enfin, nous étendons notre approche pour résoudre le problème de la sélection de vues à matérialiser lorsque celui-ci est étudié sous contraintes de ressources multiples dans un contexte distribué. A l'aide d'une évaluation de performances extensive, nous montrons que notre approche fournit des résultats de qualité et fiable. / View selection is important in many data-intensive systems e.g., commercial database and data warehousing systems to improve query performance. View selection can be defined as the process of selecting a set of views to be materialized in order to optimize query evaluation. To support this process, different related issues have to be considered. Whenever a data source is changed, the materialized views built on it have to be maintained in order to compute up-to-date query results. Besides the view maintenance issue, each materialized view also requires additional storage space which must be taken into account when deciding which and how many views to materialize.The problem of choosing which views to materialize that speed up incoming queries constrained by an additional storage overhead and/or maintenance costs, is known as the view selection problem. This is one of the most challenging problems in data warehousing and it is known to be a NP-complete problem. In a distributed environment, the view selection problem becomes more challenging. Indeed, it includes another issue which is to decide on which computer nodes the selected views should be materialized. The view selection problem in a distributed context is now additionally constrained by storage space capacities per computer node, maximum global maintenance costs and the communications cost between the computer nodes of the network.In this work, we deal with the view selection problem in a centralized context as well as in a distributed setting. Our goal is to provide a novel and efficient approach in these contexts. For this purpose, we designed a solution using constraint programming which is known to be efficient for the resolution of NP-complete problems and a powerful method for modeling and solving combinatorial optimization problems. The originality of our approach is that it provides a clear separation between formulation and resolution of the problem. Indeed, the view selection problem is modeled as a constraint satisfaction problem in an easy and declarative way. Then, its resolution is performed automatically by the constraint solver. Furthermore, our approach is flexible and extensible, in that it can easily model and handle new constraints and new heuristic search strategies for optimization purpose. The main contributions of this thesis are as follows. First, we define a framework that enables to have a better understanding of the problems we address in this thesis. We also analyze the state of the art in materialized view selection to review the existing methods by identifying respective potentials and limits. We then design a solution using constraint programming to address the view selection problem in a centralized context. Our performance experimentation results show that our approach has the ability to provide the best balance between the computing time to be required for finding the materialized views and the gain to be realized in query processing by materializing these views. Our approach will also guarantee to pick the optimal set of materialized views where no time limit is imposed. Finally, we extend our approach to provide a solution to the view selection problem when the latter is studied under multiple resource constraints in a distributed context. Based on our extensive performance evaluation, we show that our approach outperforms the genetic algorithm that has been designed for a distributed setting.
|
7 |
View-Based techniques for the efficient management of web data.Karanasos, Konstantinos 29 June 2012 (has links) (PDF)
Data is being published in digital formats at very high rates nowadays. A large share of this data has complex structure, typically organized as trees (Web documents such as HTML and XML being the most representative) or graphs (in particular, graph-structured Semantic Web databases, expressed in RDF). There is great interest in exploiting such complex data, whether in an Open Data access model or within companies owning it, and efficiently doing so for large data volumes remains challenging. Materialized views have long been used to obtain significant performance improvements when processing queries. The principle is that a view stores pre-computed results that can be used to evaluate (possibly part of) a query. Adapting materialized view techniques to the Web data setting we consider is particularly challenging due to the structural and semantic complexity of the data. This thesis tackles two problems in the broad context of materialized view-based management of Web data. First, we focus on the problem of view selection for RDF query workloads. We present a novel algorithm, which, based on a query workload, proposes the most appropriate views to be materialized in the database, in order to minimize the combined cost of query evaluation, view maintenance and view storage. Although RDF query workloads typically feature many joins, hampering the view selection process, our algorithm scales to hundreds of queries, a number unattained by existing approaches. Furthermore, we propose new techniques to account for the implicit data that can be derived by the RDF Schemas and which further complicate the view selection process. The second contribution of our work concerns query rewriting based on materialized XML views. We start by identifying an expressive dialect of XQuery, corresponding to tree patterns with value joins, and study some important properties for these queries, such as containment and minimization. Based on these notions, we consider the problem of finding minimal equivalent rewritings of a query expressed in this dialect, using materialized views expressed in the same dialect, and provide a sound and complete algorithm for that purpose. Our work extends the state of the art by allowing each pattern node to return a set of attributes, supporting value joins in the patterns, and considering rewritings which combine many views. Finally, we show how our view-based query rewriting algorithm can be applied in a distributed setting, in order to efficiently disseminate corpora of XML documents carrying RDF annotations.
|
8 |
View-Based techniques for the efficient management of web data / Techniques fondées sur des vues matérialisées pour la gestion efficace des données du webKaranasos, Konstantinos 29 June 2012 (has links)
De nos jours, des masses de données sont publiées à grande échelle dans des formats numériques. Une part importante de ces données a une structure complexe, typiquement organisée sous la forme d'arbres (les documents du web, comme HTML et XML, étant les plus représentatifs) ou de graphes (en particulier, les bases de données du Web Sémantique structurées en graphes, et exprimées en RDF). Exploiter ces données complexes, qu'elles soient dans un format d'accès Open Data ou bien propriétaire (au sein d'une compagnie), présente un grand intérêt. Le faire de façon efficace pour de grands volumes de données reste encore un défi. Les vues matérialisées sont utilisées depuis longtemps pour améliorer considérablement l'évaluation des requêtes. Le principe est q'une vue stocke des résultats pre-calculés qui peuvent être utilisés pour évaluer (une partie d') une requête. L'adoption des techniques de vues matérialisées dans le contexte de données du web que nous considérons est particulièrement exigeante à cause de la complexité structurelle et sémantique des données. Cette thèse aborde deux problèmes liés à la gestion des données du web basée sur des vues matérialisées. D'abord, nous nous concentrons sur le problème de sélection des vues pour des ensembles de requêtes RDF. Nous présentons un algorithme original qui, basé sur un ensemble de requêtes, propose les vues les plus appropriées à matérialiser dans la base des données. Ceci dans le but de minimiser à la fois les coûts d'évaluation des requêtes, de maintenance et de stockage des vues. Bien que les requêtes RDF contiennent typiquement un grand nombre de jointures, ce qui complique le processus de sélection de vues, notre algorithme passe à l'échelle de centaines de requêtes, un nombre non atteint par les méthodes existantes. En outre, nous proposons des techniques nouvelles pour tenir compte des données implicites qui peuvent être dérivées des schémas RDF sans complexifier davantage la sélection des vues. La deuxième contribution de notre travail concerne la réécriture de requêtes en utilisant des vues matérialisées XML. Nous commençons par identifier un dialecte expressif de XQuery, correspondant aux motifs d'arbres avec des jointures sur la valeur, et nous étudions des propriétés importantes de ces requêtes, y compris l'inclusion et la minimisation. En nous fondant sur ces notions, nous considérons le problème de trouver des réécritures minimales et équivalentes d'une requête exprimée dans ce dialecte, en utilisant des vues matérialisées exprimées dans le même dialecte, et nous fournissons un algorithme correct et complet à cet effet. Notre travail dépasse l'état de l'art en permettant à chaque motif d'arbre de renvoyer un ensemble d'attributs, en prenant en charge des jointures sur la valeur entre les motifs, et en considérant des réécritures qui combinent plusieurs vues. Enfin, nous montrons comment notre méthode de réécriture peut être appliquée dans un contexte distribué, pour la dissémination efficace d'un corpus de documents XML annotés en RDF. / Data is being published in digital formats at very high rates nowadays. A large share of this data has complex structure, typically organized as trees (Web documents such as HTML and XML being the most representative) or graphs (in particular, graph-structured Semantic Web databases, expressed in RDF). There is great interest in exploiting such complex data, whether in an Open Data access model or within companies owning it, and efficiently doing so for large data volumes remains challenging. Materialized views have long been used to obtain significant performance improvements when processing queries. The principle is that a view stores pre-computed results that can be used to evaluate (possibly part of) a query. Adapting materialized view techniques to the Web data setting we consider is particularly challenging due to the structural and semantic complexity of the data. This thesis tackles two problems in the broad context of materialized view-based management of Web data. First, we focus on the problem of view selection for RDF query workloads. We present a novel algorithm, which, based on a query workload, proposes the most appropriate views to be materialized in the database, in order to minimize the combined cost of query evaluation, view maintenance and view storage. Although RDF query workloads typically feature many joins, hampering the view selection process, our algorithm scales to hundreds of queries, a number unattained by existing approaches. Furthermore, we propose new techniques to account for the implicit data that can be derived by the RDF Schemas and which further complicate the view selection process. The second contribution of our work concerns query rewriting based on materialized XML views. We start by identifying an expressive dialect of XQuery, corresponding to tree patterns with value joins, and study some important properties for these queries, such as containment and minimization. Based on these notions, we consider the problem of finding minimal equivalent rewritings of a query expressed in this dialect, using materialized views expressed in the same dialect, and provide a sound and complete algorithm for that purpose. Our work extends the state of the art by allowing each pattern node to return a set of attributes, supporting value joins in the patterns, and considering rewritings which combine many views. Finally, we show how our view-based query rewriting algorithm can be applied in a distributed setting, in order to efficiently disseminate corpora of XML documents carrying RDF annotations.
|
Page generated in 0.1002 seconds