• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cloning and characterization of Epstein-Barr virus latent membrane protein 2 (LMP 2) gene.

January 1999 (has links)
by Liu Chun Ki, Kevin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 126-142). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.ii / Table of contents --- p.iii / List of figures --- p.viii / List of tables --- p.x / List of abbreviations --- p.xi / Chapter Chapter 1 --- Introduction Epstein-Barr Virus / Chapter 1.1 --- History --- p.1 / Chapter 1.2 --- Classification --- p.2 / Chapter 1.3 --- Virus and genome structure --- p.3 / Chapter 1.4 --- Epidemiology --- p.6 / Chapter 1.4.1 --- Prevalence of infection --- p.6 / Chapter 1.4.2 --- Modes of transmission --- p.7 / Chapter 1.5 --- Pathogenesis of EBV --- p.7 / Chapter 1.5.1 --- "Adsorption, penetration and dissemination" --- p.7 / Chapter 1.5.2 --- Lytic infection cycle --- p.8 / Chapter 1.5.3 --- Latent infection cycle --- p.9 / Chapter 1.5.4 --- Functions of the EBV-specific proteins associated with latent infection cycle proteins --- p.10 / Chapter 1.5.4.1 --- EBNA1 --- p.10 / Chapter 1.5.4.2 --- EBNA2 --- p.11 / Chapter 1.5.4.3 --- "EBNA 3A, 3B and 3C" --- p.11 / Chapter 1.5.4.4 --- EBNA LP --- p.12 / Chapter 1.5.4.5 --- LMP1 --- p.13 / Chapter 1.5.4.6 --- Characteristics of EBV LMP 2 gene --- p.14 / Chapter 1.5.4.7 --- Functions of LMP 2A --- p.15 / Chapter 1.5.4.8 --- Functions of LMP 2B --- p.18 / Chapter 1.6 --- Clinical significance of EBV --- p.20 / Chapter 1.6.1 --- Infectious mononucleosis (IM) --- p.20 / Chapter 1.6.2 --- Burkitt's lymphoma (BL) --- p.20 / Chapter 1.6.3 --- Nasopharyngeal carcinoma (NPC) --- p.21 / Chapter 1.6.4 --- Hodgkin's lymphoma (HL) --- p.21 / Chapter 1.7 --- Immune response to EBV infection --- p.22 / Chapter 1.7.1 --- Humoral immune response --- p.22 / Chapter 1.7.2 --- Cellular immune response --- p.22 / Chapter 1.8 --- Diagnosis of EBV infection --- p.26 / Chapter 1.9 --- Treatment and prevention --- p.27 / Chapter 1.10 --- Nasopharygneal Carcinoma (NPC) --- p.28 / Chapter 1.10.1 --- Epidemiology --- p.28 / Chapter 1.10.2 --- Etiology --- p.28 / Chapter 1.10.2.1 --- Environmental factor associated with NPC --- p.30 / Chapter 1.10.2.2 --- Genetic factors associated with NPC --- p.31 / Chapter 1.10.2.3 --- Association of NPC and EBV --- p.31 / Chapter 1.10.3 --- Diagnosis ofNPC --- p.32 / Chapter 1.10.4 --- Treatment --- p.33 / Chapter 1.11 --- Objective of the project --- p.34 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- EBV-containing cell cultures --- p.35 / Chapter 2.2 --- Extraction of total RNA --- p.36 / Chapter 2.2.1 --- Cell lysis --- p.36 / Chapter 2.2.2 --- Protein digestion --- p.36 / Chapter 2.2.3 --- DNA digestion --- p.37 / Chapter 2.2.4 --- Elution of total RNA --- p.37 / Chapter 2.2.5 --- Purity and electrophoresis analysis of total RNA --- p.38 / Chapter 2.3 --- First strand cDNA synthesis --- p.38 / Chapter 2.4 --- PCR amplification of LMP 2 cDNA --- p.39 / Chapter 2.5 --- Isolation of the PCR amplified LMP 2 cDNA --- p.40 / Chapter 2.6 --- Purification of the PCR amplified LMP 2 cDNA --- p.41 / Chapter 2.7 --- Confirmation of the PCR amplified cDNA --- p.42 / Chapter 2.7.1 --- Nested PCR --- p.42 / Chapter 2.7.2 --- Restriction enzyme digestion --- p.44 / Chapter 2.8 --- Ligation of insert LMP 2 cDNA with vector --- p.45 / Chapter 2.9 --- Transformation of competent cells JM109 --- p.45 / Chapter 2.10 --- Screening of the recombinant clones --- p.47 / Chapter 2.11 --- Small scale purification of plasmid DNA --- p.47 / Chapter 2.12 --- Determination of the size of the insert DNA --- p.48 / Chapter 2.13 --- DNA sequencing --- p.48 / Chapter 2.13.1 --- The cycle sequencing reaction --- p.48 / Chapter 2.13.2 --- Preparation of the acrylamide gel and TBE buffer --- p.51 / Chapter 2.13.3 --- Running conditions of the electrophoresis --- p.52 / Chapter 2.13.4 --- "Processing, editing and exporting the sequences" --- p.52 / Chapter 2.14 --- Data analysis --- p.53 / Chapter 2.14.1 --- Sequence analysis --- p.53 / Chapter 2.14.2 --- Amino acid analysis --- p.53 / Chapter 2.14.3 --- Protein secondary structure analysis --- p.53 / Chapter 2.14.4 --- Hydrophobicity analysis --- p.54 / Chapter 2.14.5 --- Isoelectric point analysis --- p.54 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Cell Cultures --- p.55 / Chapter 3.2 --- Extraction of total RNA --- p.56 / Chapter 3.3 --- PCR amplification --- p.61 / Chapter 3.4 --- Isolation of PCR amplified LMP 2 cDNA --- p.62 / Chapter 3.5 --- Confirmation of the PCR amplified cDNA --- p.66 / Chapter 3.5.1 --- Nested PCR --- p.66 / Chapter 3.5.2 --- Restriction enzyme digestion --- p.71 / Chapter 3.6 --- Transformation and screening --- p.77 / Chapter 3.7 --- Extraction of plasmid DNA and its digestion with restriction enzyme --- p.78 / Chapter 3.8 --- DNA sequencing --- p.83 / Chapter 3.8.1 --- DNA sequence comparison --- p.84 / Chapter 3.9 --- Amino acid sequence homology --- p.89 / Chapter 3.9.1 --- Amino acid sequence comparison --- p.90 / Chapter 3.10 --- Hydrophobicity analysis --- p.92 / Chapter 3.10.1 --- Comparison of hydrophobicity of B95-8 derived LMP2 with GeneBank --- p.93 / Chapter 3.10.2 --- Comparison of hydrophobicity of CB 14022-derived LMP2 with GeneBank --- p.95 / Chapter 3.10.3 --- Comparison of hydrophobicity of Raji-derived LMP2 with GeneBank --- p.97 / Chapter 3.11 --- Protein secondary structure analysis --- p.100 / Chapter 3.11.1 --- Comparison of secondary structure of B95-8-derived LMP2 with GeneBank --- p.100 / Chapter 3.11.2 --- Comparison of secondary structure of CB 14022-derived LMP2 with GeneBank --- p.100 / Chapter 3.11.3 --- Comparison of secondary structure of Raji-derived LMP2 with GeneBank --- p.101 / Chapter 3.12 --- Isoelectric point analysis --- p.103 / Chapter Chapter 4 --- Discussions / Chapter 4.1 --- Overall strategy for the cloning and sequencing of EBV LMP 2 gene --- p.106 / Chapter 4.2 --- Implications of the results obtained in sequencing --- p.107 / Chapter 4.3 --- Results interpretation --- p.108 / Chapter 4.3.1 --- Cell culture --- p.108 / Chapter 4.3.2 --- Extraction of total RNA --- p.108 / Chapter 4.3.3 --- PCR amplification --- p.109 / Chapter 4.3.4 --- Confirmation of the PCR amplified cDNAs using nested PCR --- p.109 / Chapter 4.3.5 --- Confirmation of the PCR amplified cDNAs using restriction enzyme digestion --- p.110 / Chapter 4.3.6 --- Ligation of EBV LMP 2 cDNA to pGEM-T Easy Vector --- p.111 / Chapter 4.3.7 --- Transformation and screening --- p.114 / Chapter 4.3.8 --- Extraction of plasmid DNA and digestion with restriction enzyme --- p.115 / Chapter 4.4 --- DNA sequencing and sequence homology --- p.116 / Chapter 4.5 --- Amino acid sequence homology --- p.117 / Chapter 4.6 --- Hydrophobicity analysis --- p.119 / Chapter 4.7 --- Protein secondary structure analysis --- p.120 / Chapter 4.8 --- Isoelectric point analysis --- p.122 / Chapter 4.9 --- Summary of results --- p.122 / Chapter 4.10 --- Conclusions --- p.124 / References --- p.126
2

Molecular diversity and evolution of human immunodeficiency virus type 1 /

Anderson, Jon Paul. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 131-157).
3

Immunogenicity of and apoptosis modulation by Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP1): implications for nasopharyngeal carcinoma /

Zhang, Xiangning, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 4 uppsatser.
4

EBV membrane protein LMP2A interactions with ubiquitin ligases and signaling scaffold /

Matskova, Liudmila V., January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 3 uppsatser.
5

Epstein-Barr virus (EBV) latent membrane protein LMP2A /

Chen, Fu, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
6

Epstein-Barr virus (EBV) genotyping in EBV-associated lesions. / CUHK electronic theses & dissertations collection

January 2004 (has links)
Tong Hung Man Joanna. / "June 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 137-149). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
7

The Linear Ubiquitin Assembly Complex Modulates Latent Membrane Protein 1 Activation of NF-κB and Interferon Regulatory Factor 7

Wang, Ling, Wang, Yujia, Zhao, Juan, Ren, Junping, Hall, Kenton H., Moorman, Jonathon P., Yao, Zhi Q., Ning, Shunbin 01 January 2017 (has links)
Recently, linear ubiquitin assembly complex (LUBAC)-mediated linear ubiquitination has come into focus due to its emerging role in activation of NF-κB in different biological contexts. However, the role of LUBAC in LMP1 signaling leading to NF-κB and interferon regulatory factor 7 (IRF7) activation has not been investigated. We show here that RNF31, the key component of LUBAC, interacts with LMP1 and IRF7 in Epstein-Barr virus (EBV)-transformed cells and that LUBAC stimulates linear ubiquitination of NEMO and IRF7. Consequently, LUBAC is required for LMP1 signaling to full activation of NF-κB but inhibits LMP1-stimulated IRF7 transcriptional activity. The protein levels of RNF31 and LMP1 are correlated in EBV-transformed cells. Knockdown of RNF31 in EBV-transformed IB4 cells by RNA interference negatively regulates the expression of the genes downstream of LMP1 signaling and results in a decrease of cell proliferation. These lines of evidence indicate that LUBAC-mediated linear ubiquitination plays crucial roles in regulating LMP1 signaling and functions. IMPORTANCE We show here that LUBAC-mediated linear ubiquitination is required for LMP1 activation of NF-κB but inhibits LMP1-mediated IRF7 activation. Our findings provide novel mechanisms underlying EBV-mediated oncogenesis and may have a broad impact on IRF7-mediated immune responses.

Page generated in 0.0485 seconds