• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 11
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Immune cell alterations in mouse models of prostate cancer

Tien, Hsing-chen Amy 05 1900 (has links)
Numerous studies have demonstrated that tumour cells have the ability to alter immune function to create an immune suppressed environment. This allows tumour cells to escape immune surveillance and consequently the tumour can progress. Dendritic and T cells have critical roles in immune activation and tolerance and are thus major targets of tumour-mediated immune suppression. Understanding the mechanism(s) by which tumour cells modulate the immune system will facilitate the development of immune system-based therapies for cancer treatments. In this study we sought to determine the nature of, and cellular and molecular mechanisms underlying, changes in immune status during tumour progression using mouse models of prostate cancer. Detailed analysis of the immunological status in a mouse prostate dysplasia model (12T-7slow) revealed that immune suppression accompanied tumour progression. We found that T cells isolated from tumour-bearing hosts were hypo-responsive to antigen stimulation. Furthermore, we demonstrated that CD4+CD25+ regulatory T cells were responsible, at least in part, for this alteration. Anti-CD25 antibody treatment reduced, but did not prevent, tumour growth in either a transplanted prostate tumour model or a spontaneously developing prostate tumour model. In addition, an altered dendritic cell phenotype and an elevated frequency of CD4+CD25+ regulatory T cells were observed within the tumour mass. Similar alterations were observed in the prostate-specific Pten knockout mice which develop advanced prostate adenocarcinoma. Interestingly, evidence of immune activation, such as an increased frequency of activated T cells, was detected in the tumour microenvironment in both mouse prostate tumour models. To identify factors that may play critical roles in the altered immune cell phenotype observed in the tumour microenvironment, a global gene expression profiling analysis was carried out to evaluate the changes in immune-related gene expression patterns. This analysis provided additional evidence for the co-existence of immune suppression and immune activation. Moreover, subsequent analyses suggested that one differentially expressed transcript, interferon regulatory factor 7, and its target genes might be involved in modulating immune cells and/or tumour progression. Taken together, these studies have important implications for designing specific and effective anti-tumour immune therapy strategies that involve manipulation of tumour cells, dendritic cells and regulatory T cells.
2

Immune cell alterations in mouse models of prostate cancer

Tien, Hsing-chen Amy 05 1900 (has links)
Numerous studies have demonstrated that tumour cells have the ability to alter immune function to create an immune suppressed environment. This allows tumour cells to escape immune surveillance and consequently the tumour can progress. Dendritic and T cells have critical roles in immune activation and tolerance and are thus major targets of tumour-mediated immune suppression. Understanding the mechanism(s) by which tumour cells modulate the immune system will facilitate the development of immune system-based therapies for cancer treatments. In this study we sought to determine the nature of, and cellular and molecular mechanisms underlying, changes in immune status during tumour progression using mouse models of prostate cancer. Detailed analysis of the immunological status in a mouse prostate dysplasia model (12T-7slow) revealed that immune suppression accompanied tumour progression. We found that T cells isolated from tumour-bearing hosts were hypo-responsive to antigen stimulation. Furthermore, we demonstrated that CD4+CD25+ regulatory T cells were responsible, at least in part, for this alteration. Anti-CD25 antibody treatment reduced, but did not prevent, tumour growth in either a transplanted prostate tumour model or a spontaneously developing prostate tumour model. In addition, an altered dendritic cell phenotype and an elevated frequency of CD4+CD25+ regulatory T cells were observed within the tumour mass. Similar alterations were observed in the prostate-specific Pten knockout mice which develop advanced prostate adenocarcinoma. Interestingly, evidence of immune activation, such as an increased frequency of activated T cells, was detected in the tumour microenvironment in both mouse prostate tumour models. To identify factors that may play critical roles in the altered immune cell phenotype observed in the tumour microenvironment, a global gene expression profiling analysis was carried out to evaluate the changes in immune-related gene expression patterns. This analysis provided additional evidence for the co-existence of immune suppression and immune activation. Moreover, subsequent analyses suggested that one differentially expressed transcript, interferon regulatory factor 7, and its target genes might be involved in modulating immune cells and/or tumour progression. Taken together, these studies have important implications for designing specific and effective anti-tumour immune therapy strategies that involve manipulation of tumour cells, dendritic cells and regulatory T cells.
3

Immune cell alterations in mouse models of prostate cancer

Tien, Hsing-chen Amy 05 1900 (has links)
Numerous studies have demonstrated that tumour cells have the ability to alter immune function to create an immune suppressed environment. This allows tumour cells to escape immune surveillance and consequently the tumour can progress. Dendritic and T cells have critical roles in immune activation and tolerance and are thus major targets of tumour-mediated immune suppression. Understanding the mechanism(s) by which tumour cells modulate the immune system will facilitate the development of immune system-based therapies for cancer treatments. In this study we sought to determine the nature of, and cellular and molecular mechanisms underlying, changes in immune status during tumour progression using mouse models of prostate cancer. Detailed analysis of the immunological status in a mouse prostate dysplasia model (12T-7slow) revealed that immune suppression accompanied tumour progression. We found that T cells isolated from tumour-bearing hosts were hypo-responsive to antigen stimulation. Furthermore, we demonstrated that CD4+CD25+ regulatory T cells were responsible, at least in part, for this alteration. Anti-CD25 antibody treatment reduced, but did not prevent, tumour growth in either a transplanted prostate tumour model or a spontaneously developing prostate tumour model. In addition, an altered dendritic cell phenotype and an elevated frequency of CD4+CD25+ regulatory T cells were observed within the tumour mass. Similar alterations were observed in the prostate-specific Pten knockout mice which develop advanced prostate adenocarcinoma. Interestingly, evidence of immune activation, such as an increased frequency of activated T cells, was detected in the tumour microenvironment in both mouse prostate tumour models. To identify factors that may play critical roles in the altered immune cell phenotype observed in the tumour microenvironment, a global gene expression profiling analysis was carried out to evaluate the changes in immune-related gene expression patterns. This analysis provided additional evidence for the co-existence of immune suppression and immune activation. Moreover, subsequent analyses suggested that one differentially expressed transcript, interferon regulatory factor 7, and its target genes might be involved in modulating immune cells and/or tumour progression. Taken together, these studies have important implications for designing specific and effective anti-tumour immune therapy strategies that involve manipulation of tumour cells, dendritic cells and regulatory T cells. / Medicine, Faculty of / Medicine, Department of / Experimental Medicine, Division of / Graduate
4

Identification of PP1 as the First Phosphatase for IRF7

Ning, Shunbin, Wang, Ling 01 January 2017 (has links) (PDF)
Excerpt: Interferon (IFN) regulatory factor 7 (IRF7) is phosphorylated and activated in response to pathogenic infections for production of type I IFNs
5

Rôle de la protéine scaffold TANK/I-TRAF dans l'activation des facteurs de transcription IRF-3 et -7.

Gioia, Romain 24 September 2008 (has links)
Suite à une stimulation de macrophages au LPS, TANK est phosphorylé en C-terminal et polyubiquitiné de manière non dégradative en N-terminal. Ces deux phénomènes sont indépendants mais dépendent tout deux des kinases IKKe/TBK1. TANK comme ces deux kinases est indispensable à l'activations des facteurs transcriptionnels IRF3/7. Le signalosome COP9/CSN semble aussi intervenir dans la régulation de cette activation via l'interaction TANK/IKKe/CSN5.
6

A Protein Coding Variant in IRF7 is associated with SLE Risk and Affects Production of Type IIinterferon

Fjellman, Ellen V. F. 05 October 2021 (has links)
No description available.
7

Protein Phosphatase 1 Abrogates IRF7-Mediated Type I IFN Response In Antiviral Immunity

Wang, Ling, Zhao, Juan, Ren, Junping, Hall, Kenton H., Moorman, Jonathan P., Yao, Zhi Q., Ning, Shunbin 01 May 2016 (has links)
Interferon (IFN) regulatory factor 7 (IRF7) plays a key role in the production of IFN‐α in response to viral infection, and phosphorylation at IRF7 C‐terminal serine sites is prelude to its function. However, phosphatases that negatively regulate IRF7 phosphorylation and activity have not been reported. In this study, we have identified a conserved protein phosphatase 1 (PP1)‐binding motif in human and mouse IRF7 proteins, and shown that PP1 physically interacts with IRF7. Exogenous expression of PP1 subunits (PP1α, β, or γ) ablates IKKε‐stimulated IRF7 phosphorylation and dramatically attenuates IRF7 transcriptional activity. Inhibition of PP1 activity significantly increases IRF7 phosphorylation and IRF7‐mediated IFN‐α production in response to Newcastle disease virus (NDV) infection or Toll‐like receptor 7 (TLR7) challenge, leading to impaired viral replication. In addition, IFN treatment, TLR challenges and viral infection induce PP1 expression. Our findings disclose for the first time a pivotal role for PP1 in impeding IRF7‐mediated IFN‐α production in host immune responses.
8

Protein Phosphatase 1 Abrogates IRF7-Mediated type I IFN Response in Antiviral Immunity

Wang, Ling, Ning, Shunbin 01 January 2018 (has links)
No description available.
9

Interferon Regulatory Factor 7 (IRF7) in Systemic Lupus Erythematosus

Verba, Mark J. 09 November 2020 (has links)
No description available.
10

Regulation of Interferon Stimulated Genes in West Nile Virus Infected Mouse Embryofibroblasts

Pulit-Penaloza, Joanna A 05 May 2012 (has links)
The induction of type I interferon (IFN) and subsequent activation of interferon stimulated genes (ISGs) represent a first line of defense against viral infection. Typically type I IFN signaling leads to the phosphorylation of the STAT1 and STAT2 transcription factors (TFs) which then form a trimetric complex with IRF-9 and translocate to the nucleus to induce ISG expression. However, the results of this study showed that IFN-mediated upregulation of the ISG Oas1b, the product of which confers resistance to flavivirus induced disease, can be induced in a STAT1-independent manner. Since numerous ISGs have antiviral functions, many viruses have evolved strategies to disrupt the type I IFN-signaling pathway. In cases when STAT1 activation is blocked by a viral infection, STAT1-independent upregulation of ISGs provides an additional strategy for the cell to mount an effective antiviral response. Infection of mouse embryofibroblasts (MEFs) with West Nile virus (WNV) induced the production of IFN beta and STAT1 and STAT2 phosphorylation but blocked nuclear translocation and binding of these TFs to the promoters of the ISGs, Oas1a, Oas1a, Irf7 and Irf1. However, each of these antiviral ISGs was efficiently upregulated in infected cells and IRF-9 was shown to be crucial for the upregulation of Oas1a, Oas1b and Irf-7. IRF-3 or IRF-7 was needed to maintain the upregulation of these genes at later times of infection. In contrast, the upregulation of Irf1 by WNV infection did not depend on the tested IRFs but was reduced by inhibition of the p38 or NF-kappa B pathways. Although Irf1 mRNA was efficiently upregulated in WNV-infected cells IRF-1 protein synthesis was blocked. The precise mechanism of the IRF-1 translational suppression is not yet known, but the suppression was shown not to be due to increased proteasomal degradation of IRF-1 nor to alternative splicing of Irf1 mRNA. Preliminary results suggest miRNAs may play an indirect role in regulating IRF-1 translation. The results of this study expand knowledge about the strategies evolved by viruses to evade host cell antiviral responses and also provide valuable insights about alternative mechanisms utilized by the host cell to counteract viral infections.

Page generated in 0.0238 seconds