• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 17
  • 9
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 50
  • 21
  • 20
  • 18
  • 15
  • 14
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Poxvirus evolution the role of horizontal gene transfer /

Odom, Mary Rebecca. January 2010 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2010. / Title from PDF title page (viewed on July 7, 2010). Includes bibliographical references.
82

Structure determination of the major outer membrane protein from Campylobacter jejuni, &, Structural and functional studies of the endonuclease from Lassa virus

Wallat, Gregor D. January 2015 (has links)
The major outer membrane protein, MOMP, is the main protein in the outer membrane of pathogenic Campylobacter bacteria. Infection with Campylobacter is the principle cause of severe enteritis and untreated may result in non-trauma related paralysis. Studies have shown, that MOMP can act as antigen and thus has the potential to provide protection by induced humoral immunity. In our study, we expressed recombinant MOMP in Escherichia1coli, developed an alternative method to extract the outer membrane protein from its lipid environment and solved and characterised its crystal structure. The information acquired through these structural studies sheds new light on the structural characteristics of this important membrane protein. The West-African Lassa virus can cause deadly haemorrhagic fever. Lassa virus only possesses five proteins, which are synergistically responsible for the virus' life cycle, and virulence. The way in which the individual proteins act with one another and with host cell proteins is not fully understood. The polymerase L is the largest of the five proteins and has multiple functions. In this study, we first divided the L protein into different domains and tested their recombinant expression in Escherichia1coli. For first time, we solved the crystal structure of the putative endonuclease domain of Lassa virus and validated its endonucleolytic function by means of RNA digestion assays and alanine point mutations.
83

Prediction of interacting motifs within the protein subunits of Picornavirus capsids

Ross, Caroline Jane January 2015 (has links)
The Picornaviridae family contains a number of pathogens which are economically important including Poliovirus, Coxsakievirus, Hepatitis A Virus, and Foot-and-Mouth-Disease-Virus. Recently the emergence of novel picornaviruses associated with gastrointestinal, neurological and respiratory diseases in humans has been reported. Although effective vaccines for viruses such as FMDV, PV and HAV have been developed there are currently no antivirals available for the treatment of picornavirus infections. Picornaviruses proteins are classified as: the structural proteins VP1, VP2, VP3 and VP4 which form the subunits of the viral capsid and the replication proteins which function as proteases, RNA-polymerases, primers and membrane binding proteins. Although the host specificity and viral pathogenicity varies across members of the family, the icosahedral capsid is highly conserved. The capsid consists of 60 protomers, each containing a single copy of VP1, VP2 and VP3. A fourth capsid protein, VP4, resides on the internal side of the capsid. Capsid assembly is integral to life-cycle of picornaviruses; however the process is complex and not fully-understood. The overall aim of the study was to broaden the understanding of the evolution and function of the structural proteins across the Picornaviridae family. Firstly a comprehensive analysis of the phylogenetic relationships amongst the individual structural proteins was performed. The functions of the structural proteins were further investigated by an exhaustive motif analysis. A subsequent structural analysis of highly conserved motifs was performed with respect to representative enteroviruses, Foot-and-Mouth-Disease-Virus and Theiler’s Virus. This was supplemented by the in silico prediction of interacting residues within the crystal structures of these protomers. Findings in this study suggest that the capsid proteins may be evolving independently from the replication proteins through possible inter-typic recombination of functional protein regions. Moreover the study predicts that protomer assembly may be facilitated through a network of multiple subunit-subunit interactions. Multiple conserved motifs and principle residues predicted to facilitate capsid subunit-subunit interactions were identified. It was also concluded that motif conservation may support the theory of inter-typic recombination between closely related virus sub-types. As capsid assembly is critical to the viral life-cycle, the principle interacting motifs may serve as novel drug targets for the antiviral treatment of picornavirus infections. Thus the findings in the study may be fundamental to the development of treatments which are more economically feasible or clinically effective than current vaccinations.
84

Engineering Reporter Tags in Flaviviruses to Probe Viral Structure and Morphogenesis

Matthew T Lerdahl (8726223) 24 April 2020 (has links)
<div>The family Flaviviridae includes important genera such as flavivirus and hepacivirus which comprise significant human pathogens that affect hundreds of millions annually. The understanding of these viruses, the viral life cycle, and pathogenicity is vital when it comes to developing therapeutics. Flavivirus virions undergo major conformational rearrangements during the life cycle, including the assembly and maturation steps. In order to create a reagent to investigate these processes, luminescent reporter viruses have been constructed. Luminescent reporter tags have yet to be incorporated into the structural proteins of dengue virus (DENV) without significantly affecting replication or infectivity and successful tagging would allow for targeted studies examining access to specific structural epitopes. Engineering tags in DENV structural proteins is particularly difficult because most reporter tags involve large insertions which may create steric hindrance and inhibit proper protein folding. However, the reporter system described here, developed by Promega, is much smaller than a full-size luciferase protein. It involves an eleven amino acid subunit (HiBiT) tagged to a viral protein that creates measurable luminescence when incubated with the larger subunit (LgBiT). Using the structure of the virion as a guide, the HiBiT reporter tag was incorporated into the structural region of the DENV genome including sites in capsid (C) as well as the glycoproteins membrane (M) and envelope (E). Resulting recombinant viruses were characterized and tag sites within the C protein membrane anchor as well as the transmembrane domain of M protein were found to tolerate HiBiT insertion and produce infectious particles. The recombinant virus possessing HiBiT in C protein was found to be stable over three rounds of serial passaging while virus containing the M protein tag site was found to be unstable. HiBiT activity of the capsid tagged virus was also found to directly correlate with purified infectious particles, suggesting the capsid membrane anchor may remain associated with the virus even after polyprotein processing. Additionally, insert composition was found to be a key determinant for the production of infectious virus. The lessons learned from engineering HiBiT in the DENV system were then applied to hepatitis C virus (HCV). </div><div>The highly lipophilic and pleiomorphic nature of HCV has made structural studies particularly difficult. However, by constructing multi-tagged reporter viruses containing both HiBiT and various purification tags, researchers will save time and resources in preparation for structural studies which are vital for vaccine development. In this study, HiBiT was incorporated into sites within HCV previously shown to tolerate tags of various sizes. Different insert compositions were engineered within the genome and the construct containing both FLAG and HiBiT tags within the N-terminus of E2 yielded highly infectious and quantifiable, luminescent virus. The recombinant HCV containing FLAG and HiBiT displayed similar peak titer as compared to WT while also demonstrating HiBiT activity. Furthermore, the FLAG peptide was found to be partially surface exposed and capable of being used for virus purification purposes. The multi-tagged reporter virus characterized in this study provides a robust platform for quantification and purification of HCV, two facets of research that are critical for the determination of viral structure via cryo-EM and other imaging techniques. The findings from both the DENV and HCV studies provide a robust foundation for future tagging of viruses within the family Flaviviridae and offer insight on the structural proteins that compose the virion.</div>
85

Tn1 Insertions in the 3' Untranslated Region of the ant Operon of Bacteriophage P22 Affect ant Gene Expression and Alter ant mRNA Stability: a Thesis

McMahan, Linda 01 September 1985 (has links)
Insertion of transposable elements within an operon has been known not only to abolish expression of the gene interrupted by the insertion, but also to exert a strong polar effect on the expression of downstream genes in the same operon. In this dissertation, I have shown that insertions of the transposable ampicillin-resistance element Tn1, either in the polar or nonpolar orientation, in the 3' untranslated region of the bacteriophage P22 antirepressor (ant) operon reduce the rate of upstream ant gene expression; insertions of Tn1 in the nonpolar orientation reduce the rate of ant gene expression more significantly than those in the polar orientation. This effect appears to be due to reduced stability of ant mRNA. Tn1 deletion mutants of one of the nonpolar Tn1 insertion mutations have been isolated. Two classes of Tn1 deletions are obtained. Class I retains a 68 bp Tn1 sequence that shows a potential 14 bp stem and 37 bp loop conformation, while class II retains 147 bp Tn1 sequence that shows a potential 69 bp stem and 6 bp loop conformation. These two classes of Tn1 deletions do not delete any P22 sequences. Class I but not class II Tn1 deletion mutants restore the rate of ant gene expression and ant mRNA stability. Six different Ant+ revertants of the class II Tn1 deletion mutant simultaneously restore the rate of ant gene expression and ant mRNA stability. They all have deletions that remove all or part of the class II Tn1 sequence. In one case, the Tn1 sequence retained shows a potential 15 bp stem and 8 bp loop conformation, in the other cases, no secondary structure is predicted to form. The results of the Tn1 deletion mutants suggest that the stem-and-loop structures and the length of stems potentially formed by the Tn1 sequences in mRNA may affect its stability.
86

Identification of the Minimal Domain of RNA Trihosphastase Activity in the L Protien of Rinderpest Virus and Charecterization of its Enzymatic Activities

Singh, Piyush Kumar January 2013 (has links) (PDF)
Morbilliviruses belong to the family Paramyxoviridae of the Mononegavirale order of viruses. The Mononegavirale order contains viruses which contain negatively-polar, non-segmented and single stranded RNA genomes. This order contains some of most lethal pathogens known to the humankind. Ebola virus and Marburg virus are perhaps the most lethal human pathogens. Rinderpest virus, declared eradicated in 2011, was known to be the most significant cattle killer. Similarly the Canine distemper virus and Rabies virus, two topmost canine pathogens belong to this order. The L protein in the viruses of Morbillivirus genus harbours the viral RNA-dependent RNA polymerase that replicates and transcribes the viral genome and also all the mRNA capping enzymes, viz. RNA 5’ triphosphatase, guanylyltransferase, RNA (guanine-7-)methyltransferase and RNA 5’ cap-dependent (2’-oxo-)methyltransferase. Moreover this protein can act as a protein kinase that can regulate the function of P protein which serves as a switch between transcription and replication. mRNA capping is necessary for the virus for the purpose of exploiting host cellular machinery towards viral protein synthesis. The Rinderpest virus L protein serves as a model to study the capping enzymes of Morbillivirus. RNA triphosphatase (RTPase), the first enzyme of the capping cascade had earlier been located on the L protein. The RTPase minimal domain on the L protein was identified earlier by sequence homology studies done with RTPase proteins of Baculovirus and Vaccinia virus and cloned. The bacterially expressed recombinant domain was shown to possess RTPase activity. The enzymatic activity was characterized and the RTPase was found to be a metal-dependent enzyme which is highly specific to capping viral mRNA. Further characterization of the domain revealed that the domain also possesses nucleotide triphosphatase (NTPase), tripolyphosphatase and pyrophosphatase activities. Two site-directed mutants in motif-A of the domain: E1645A and E1647A were also tested and were found to be essential for the RTPase and NTPase activity. It was also recognized through these mutant studies that the active sites of RTPase and NTPase activities are partially overlapping. Earlier work done with Vesicular stomatitis virus capping enzymes showed that the Rhabdoviridae family of viruses follow unconventional capping pathway utilizing an enzyme polyribonucleotidyltransferase (PRNTase) which transfers GDP to 5’-monophosphated RNA. Characterization of the RTPase activity which converts 5’-triphosphated RNA into 5’-diphosphated RNA is an evidence for the morbilliviruses utilizing the conventional eukaryotic capping cascade. The results show that Paramyxoviridae do not follow unconventional capping pathway for the mRNA capping as has been the paradigm in the past decade.
87

The development of enzyme-linked immunosorbent assays to detect potato virus Y and potato leaf roll virus using recombinant viral coat proteins as antigens

Matzopoulos, Mark 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: Potato Virus Y (PVY) and Potato Leafroll Virus (PLRV) are two of the most destructive potato viruses capable of drastically diminishing crop yields by up to 80%. The presence of these viruses in planting material namely seed potato stocks are routinely diagnosed by enzyme-linked immunosorbent assay (ELISA) kits. The kits currently used by Potatoes South Africa are obtained from Europe. These kits have produced false positive and false negative results in the past. Potatoes South Africa required an ELISA that was reliable, cheap and specific for the detection of South African strains of the two respective viruses. In this study the viral coat protein genes were amplified by RT-PCR from a South African source of infected plant material. The PVY and PLRV coat protein genes were subsequently cloned into pGEM-T Easy vector and sequenced. The sequences of the two viruses were aligned and compared to corresponding viral coat protein gene sequences obtained from Genbank. Subsequently the two amplified and cloned coat protein genes of PVY and PLRV were sub-cloned into an expression system (pET-14b) to induce and express the respective recombinant viral coat proteins. The induction of the cloned coat protein genes yielded successful production of the recombinant PVY coat protein but the induction and expression of the recombinant PLRV coat protein was unsuccessful. The isolated recombinant PVY CP was then used to immunize a rabbit to produce highly specific anti-PVY CP immunoglobulins. The antiserum obtained from the rabbit was used to develop an ELISA to detect the presence of PVY in seed potato stocks in South Africa. The ELISA kit was subsequently used in preliminary trials to determine if the kit could detect PVY infected plant material. The initial results of the ELISA trials using PVY infected material obtained from Potatoes South Africa yielded positive results. / AFRIKAANSE OPSOMMING: Aartappel Virus Y (PVY) en Aartappel Rolblad Virus (PLRV) is twee van die mees vernietigende aartappel virusse wat ‘n oes tot 80% kan verlaag. Virus infeksie van plant materiaal tewete aartappelmoere word deur “enzyme-linked immunosorbent assay” (ELISA) toetsstelle bevestig. Die toetsstelle wat op die oomblik gebruik word deur Aartappels Suid- Afrika word in Europa vervaardig. Hierdie toetsstelle het vals positiewe en vals negatiewe resultate in die verlede gegee. Aartappels Suid-Afrika benodig toetsstelle wat betroubaar, goedkoop en spesifiek vir Suid-Afrikaanse virus stamme is. In hierdie studie is besmette plantmateriaal vanuit Suid-Afrika gebruik vir die amplifisering van virale mantel proteïen gene met behulp van RT-PCR. Die PVY en PLRV mantel proteïen gene was daarna in die pGEM-T Easy vektor gekloneer en nukleotied volgordes is bepaal. Die nukleotied volgordes is met ander PVY en PLRV gene vanaf Genbank vergelyk. Die twee ge-amplifiseerde en gekloneerde mantel proteïen gene van PVY en PLRV is uitgesny en gekloneer in ‘n ekspressie sisteem (pET-14b) om die mantel proteïen te produseer. Induksie van die gekloneerde mantel proteïen gene het gelei tot die suksesvolle produksie van ‘n PVY mantel proteïen, maar produksie van die PLRV mantel proteïen was onsuksesvol. Die geïsoleerde PVY mantel proteïen is vervolgens gebruik vir die immunisering van ‘n konyn vir die produksie van konyn anti-PVY antiliggame. Die antiserum verkry vanaf die konyn is gebruik vir die ontwikkeling van ‘n ELISA vir die identifisering van PVY infeksies in aartappelmoere. Voorlopige proewe is deurgevoer om te bepaal of hierdie ELISA PVY infeksies in plantmateriaal sou kon opspoor. Aanvanklike resultate toon dat die ELISA suksesvol PVY infeksies in plantmateriaal verkry vanaf Aartappels Suid-Afrika kan opspoor.
88

Structural analysis of influenza A virus nucleoprotein and its interaction with RNA and polymerase subunit PB2. / CUHK electronic theses & dissertations collection

January 2011 (has links)
The poultry-to-human transmission of the influenza virus and the recent H1Nl influenza pandemic have become major concerns worldwide. The nucleoprotein (NP) of influenza virus binds the RNA genome and plays essential role in transcription and replication during the virus life cycle. / The study leads to a better understanding towards the RNP organization of influenza virus and provides information for the future design of anti-influenza agents. / We have also shown, by RNP reconstitution assay and co-immunoprecipitation, that the interaction between NP and PB2 is crucial for the proper functioning of the RNP. The functional association of NP and PB2 requires either the PB2 host-determining residue lysine-627 or arginine-630 with the latter involving NP arginine-150 also. Using SPR, we have demonstrated that both residues take part in the direct protein-protein interaction, without the involvement of RNA. These results suggest a dual interaction mechanism between NP and PB2. This may confer replication advantages to the virus, as either one can give an active RNP and explains the increased virulence of avian influenza viruses carrying the E627K mutation in mammalian cells. In addition, our findings identify the NP-PB2 interacting surface, with the PB2 627/630 region facing the RNA binding groove of NP. / We have determined the 3.3 A crystal structure of H5N1 NP, which is composed of head and body domains and a tail loop. Using surface plasmon resonance (SPR), we found the basic loop (residues 73-91) and arginine-rich groove, but mostly a protruding element centering at R174 and R175, to be important in RNA binding. Ribonucleoprotein (RNP) reconstitution assay with these multiple-point and deletion mutants indicate their functional importance towards the transcription-replication activities of the virus polymerase. Single-point mutations at these concerned regions do not have a significant effect on their RNP activities, suggesting that NP mediates RNA-binding through multiple residues. / Ng, Ka Leung. / Adviser: Pang Chui Shaw. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 121-136). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
89

Identification of interacting partner(s) of SARS-CoV spike glycoprotein.

January 2006 (has links)
Chuck Chi-pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 138-160). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.v / Contents --- p.vii / List of Figures --- p.xi / List of Tables --- p.xiii / Abbreviations --- p.xiv / Acknowledgement --- p.xviii / Introduction / Chapter 1. --- Background / Chapter 1.1 --- SARS / Chapter 1.1.1 --- Outbreak and Influence --- p.1 / Chapter 1.1.2 --- Clinical Features --- p.4 / Chapter 1.2 --- SARS-CoV / Chapter 1.2.1 --- Genomic Organization --- p.5 / Chapter 1.2.2 --- Morphology --- p.7 / Chapter 1.2.3 --- Phylogenetic Analysis --- p.9 / Chapter 1.3 --- S Glycoprotein / Chapter 1.3.1 --- Functional Roles --- p.11 / Chapter 1.3.2 --- Structure and Functional Domains --- p.12 / Chapter 1.3.3 --- Interacting Partners --- p.15 / Chapter 1.3.4 --- Viral Entry Mechanism --- p.17 / Chapter 1.4 --- Aim of Study / Chapter 1.4.1 --- Mismatch of SARS-CoV Tissue Tropism and Tissue Distribution of ACE2 --- p.20 / Chapter 1.4.2 --- Presence of Other Interacting Partner(s) --- p.22 / Chapter 1.4.3 --- Significance of the Study Materials and Methods --- p.22 / Chapter 2. --- Plasmid Construction / Chapter 2.1 --- Fragment Design / Chapter 2.1.1 --- Functional Domain Analysis --- p.23 / Chapter 2.1.2 --- Secondary Structure and Burial Region Predictions --- p.24 / Chapter 2.2 --- Vector Amplification / Chapter 2.2.1 --- E. coli Strain DH5a Competent Cell Preparation --- p.30 / Chapter 2.2.2 --- Transformation of E. coli --- p.30 / Chapter 2.2.3 --- Small-scale Vector Amplification --- p.31 / Chapter 2.3 --- Cloning of DNA Fragments into Various Vectors / Chapter 2.3.1 --- Primer Design --- p.32 / Chapter 2.3.2 --- DNA Amplification --- p.35 / Chapter 2.3.3 --- DNA Purification --- p.35 / Chapter 2.3.4 --- "Restriction Enzyme Digestion, Ligation and Transformation" --- p.36 / Chapter 2.3.5 --- Colony PCR --- p.37 / Chapter 2.4 --- DNA Sequence Analysis / Chapter 2.4.1 --- Primer Design --- p.35 / Chapter 2.4.2 --- DNA Amplification and Purification for DNA Sequence Analysis --- p.39 / Chapter 2.4.3 --- Sequence Detection and Result Analysis --- p.40 / Chapter 3. --- "Protein Expression, Purification and Analysis" / Chapter 3.1 --- Protein Expression in E. coli / Chapter 3.1.1 --- Molecular Weight and pI Predictions --- p.41 / Chapter 3.1.2 --- Glycerol Stock Preparation --- p.41 / Chapter 3.1.3 --- Protein Expression Induction --- p.41 / Chapter 3.1.4 --- Protein Extraction --- p.42 / Chapter 3.1.5 --- Affinity Chromatography --- p.42 / Chapter 3.1.6 --- Removal of GroEL --- p.43 / Chapter 3.1.7 --- Protein Solubilization and Refolding --- p.44 / Chapter 3.2 --- Protein Expression in P. pastoris / Chapter 3.2.1 --- Large-scale Plasmid Amplification --- p.46 / Chapter 3.2.2 --- Restriction Enzyme Digestion and Ethanol Precipitation --- p.47 / Chapter 3.2.3 --- Preparation of KM71H Competent Cells --- p.47 / Chapter 3.2.4 --- Electroporation --- p.48 / Chapter 3.2.5 --- Colony PCR --- p.48 / Chapter 3.2.6 --- Protein Expression Induction and Time Course Study --- p.49 / Chapter 3.2.7 --- Deglycosylation --- p.49 / Chapter 3.3 --- Protein Analysis / Chapter 3.3.1 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.50 / Chapter 3.3.2 --- Western Blotting --- p.50 / Chapter 3.3.3 --- Mass Spectrometry --- p.51 / Chapter 3.3.4 --- N-terminal Sequencing --- p.52 / Chapter 3.3.5 --- Size Exclusion Chromatography --- p.52 / Chapter 4. --- Identification of Interacting Partner(s) / Chapter 4.1 --- VeroE6 Preparation / Chapter 4.1.1 --- Cell Culture --- p.53 / Chapter 4.1.2 --- Protein Extraction and Western Blotting --- p.53 / Chapter 4.2 --- Pull-down Assay --- p.54 / Chapter 4.3 --- Two-dimensional Gel Electrophores --- p.is / Chapter 4.3.1 --- Isoelectric Focusing --- p.56 / Chapter 4.3.2 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.56 / Chapter 4.3.3 --- Silver Staining --- p.57 / Chapter 4.4 --- Mass Spectrometry / Chapter 4.4.1 --- Destaining --- p.58 / Chapter 4.4.2 --- In-gel Digestion --- p.58 / Chapter 4.4.3 --- Desalting by Zip-tip --- p.59 / Chapter 4.4.4 --- Loading Sample --- p.59 / Chapter 4.4.5 --- Peptide Mass Detection and Data Analysis --- p.59 / Results / Chapter 5. --- S Protein Expression / Chapter 5.1 --- Plasmid Construction --- p.61 / Chapter 5.2 --- Molecular Weight and pi Predictions --- p.63 / Chapter 5.3 --- Protein Expression and Optimization in E. coli / Chapter 5.3.1 --- "Comparison of Expression Levels, Solubility and Purities of S Protein Fragments" --- p.64 / Chapter 5.3.2 --- "Alteration of the Solubility in Various Cell Strains, Expression Conditions and Lysis Buffers" --- p.68 / Chapter 5.3.3 --- Identification and Remove of the non-target proteins --- p.72 / Chapter 5.3.4 --- Unfolding and Refolding --- p.79 / Chapter 5.4 --- Protein Expression and Optimization in P. pastoris / Chapter 5.4.1 --- "Expression Levels, Solubility and Purities of Various S Protein Fragments" --- p.85 / Chapter 5.4.2 --- Characterization of De-N-glycosylated Recombinant Proteins --- p.89 / Chapter 6. --- Identification of Interacting partners / Chapter 6.1 --- Practicability of Pull-down Assay / Chapter 6.1.1 --- ACE2 Extraction --- p.95 / Chapter 6.1.2 --- Pull-down of ACE2 by the P. pastoris-expressed recombinant RBD --- p.96 / Chapter 6.2 --- Pull-down Assay and Two-dimensional Gel Electrophoresis --- p.97 / Chapter 6.3 --- Identification of Putative Interacting Partners by MALDI-TOF-TOF --- p.107 / Chapter 7. --- Discussion / Chapter 7.1 --- S Protein Expression in E. coli / Chapter 7.1.1 --- Improving Recombinant Protein Expression Level and Solubility --- p.114 / Chapter 7.1.2 --- S Recombinant Protein Bound by GroEL --- p.117 / Chapter 7.2 --- S Protein Expression in P. pastoris / Chapter 7.2.1 --- Advantages of Using P. pastoris --- p.119 / Chapter 7.2.2 --- Variation of S Fragment Expression Levels --- p.120 / Chapter 7.2.3 --- Sizes of S Protein Fragments --- p.123 / Chapter 7.3 --- Identification of Interacting Partners / Chapter 7.3.1 --- Relationship between S Protein and Putative Interacting Partners --- p.124 / Chapter 7.3.2 --- Failure of Finding ACE2 --- p.125 / Chapter 7.3.2 --- Difficulty in the Identification of Protein Spots --- p.126 / Chapter 7.4 --- Conclusion --- p.131 / Chapter 7.5 --- Future Perspective --- p.132 / Chapter 8. --- Appendix --- p.133 / Chapter 9. --- References --- p.138
90

Diversity In Indian Equine Rotaviruses And Structure And Function Of Rotavirus Non Structural Protein 4 (NSP4)

Deepa, R 12 1900 (has links)
Rotaviruses, members of the family Reoviridae, are the major etiologic agents of severe, acute dehydrating diarrhea in the young of many mammalian species, including humans, calves and foals. Recent estimates indicate an annual death toll of approximately 600,000 infants due to rotavirus, besides inflicting staggering economic burden worldwide. Most of these deaths occur in the developing countries and India is estimated to account for about a quarter of these deaths. Extensive molecular epidemiology studies carried out by our laboratory have revealed many interesting aspects about rotavirus diversity in this country. Molecular epidemiology of rotaviruses causing severe diarrhea in foals in two organized farms in northern India was carried out. These foal rotaviruses exhibited 5 different electropherotypes (E), E1-E5. Strains belonging to E1, E2 and E5 exhibited G10, P6[1]; G3 and G1 type specificities. Though the E1 strains possessed genes encoding G10 and P6[1] type outer capsid proteins, unlike the G10, P8[11] type strain I321, they exhibited high reactivity with the G6-specific MAb suggesting that the uncommon combination altered the specificity of the conformation-dependent antigenic epitopes on the surface proteins. Strains belonging to electropherotypes E3 and E4 were untypeable. Sequence analysis of the VP7 gene from E4 strains (Erv92 and Erv99), revealed that they represent a new VP7 genotype, G16. Nonstructural protein 4 (NSP4) of rotavirus is a multidomainal, multifunctional protein and is the first viral enterotoxin identified. We have recently reported that the diarrhea-inducing and double-layered particle (DLP)–binding properties of NSP4 are dependent on a structurally and functionally overlapping conformational domain that is conferred by cooperation between the N- and C-terminal regions of the cytoplasmic tail (Jagannath et al., J. Virol, pp 412-425, 2006). Further, a stretch of 40 amino acids (aa) from the C-terminus is predicted to be unstructured and highly susceptible to trypsin cleavage. We examined the role of this unstructured C-terminus of Hg18 NSP4 and SA11 NSP4 on the biological properties of NSP4 using a series of deletion and substitution mutants of the conserved proline and tyrosine residues in this region. Gel filtration, CD spectroscopy and Thioflavin T binding studies showed that these mutants have altered secondary structural contents and either failed to multimerize efficiently or multimerized with altered conformation. The C-terminal ten residues appear to play a regulatory role on multimerization. Proline 168, tyrosine 166 and methionine 175 appear to be critical determinants of DLP binding activity whereas, proline 165 and tyrosine 85 and 131 appears to determine the affinity of binding to DLP in the context of NSP4 ∆N72. Deletion and substitution mutants exhibited severely reduced diarrhea inducing ability and DLP binding property. Of great biological significance is the drastic decrease in the diarrhea inducing ability of the N- and C- terminal deletion mutant ∆N94 ∆C29 that exhibited about 11,000-fold increase in DD50 than the wild type (WT) ∆N72. These studies revealed that the predicted unstructured C-terminus is an important determinant of biological properties of NSP4. Extensive efforts to crystallize the complete cytoplasmic tail (CT) of NSP4 were unsuccessful and to date, the structure of only a synthetic peptide corresponding to aa 95-135 has been reported. Our recent studies indicate that the interspecies variable regions from aa 135-141 as well as the extreme C-terminus are critical determinants of virus virulence and diarrhea-inducing ability of the protein. Here, we examined the crystallization properties of several deletion mutants and report the structure of a mutant recombinant NSP4 from symptomatic (SA11) and asymptomatic (I321) strains that lacked the N-terminal 94 and C-terminal 29 aa (NSP4: 95-146) at 1.67 Å and 2.7Å, respectively. In spite of the high-resolution data, electron density for the stretch of 9 residues from the C-terminus could not be seen suggesting its highly flexible nature. The crystal packing showed a clear empty space for this region. Extension of the unstructured C-terminus beyond aa 146 hindered crystallization under the experimental conditions. The present structure revealed significant differences from that of the synthetic peptide in the conformation of amino acids at the end of the helix as well as crystal packing owing to the additional space required to accommodate the unstructured virulence-determining region. Conformational differences in this critical region effected by the presence or absence of proline or glycine at specific positions in the unstructured C-terminus, could form the basis for the wide range of variation seen in the diarrhea-inducing ability of NSP4 from different strains in newborn mouse pups. Although symptomatic and asymptomatic strains do not generally differ in the presence or absence of the conserved prolines or glycines, they contain a few additional changes that could alter the unique conformation required for optimal biological activity. In conclusion, we demonstrate that the predicted unstructured C-terminal region is indeed highly flexible and is an important determinant of biological functions of the NSP4, mutations in which probably correlates with the virulence properties of the virus.

Page generated in 0.0831 seconds