• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanism Design for Virtual Power Plant with Independent Distributed Generators

Kulmukhanova, Alfiya 07 1900 (has links)
We discuss a model of a virtual power plant (VPP) that provides market access to privately-owned distributed generations (DGs). The VPP serves passive loads, processes bids from generators, and trades in the wholesale market. The generators can be renewable or thermal, and they act strategically to maximize their own profit. The VPP establishes the rules of the internal market to minimize the cost of energy and the cost of balancing while ensuring generator participation and load balancing. We derive a heuristic mechanism for internal market and propose a dynamic programming approach for minimizing the VPP cost. We present illustrative simulations for both single and multistage market bidding and then compare the resulting performance to the centralized VPP model, where the DGs are assumed to be owned by the VPP. We show that the proposed design incentivizes the DG agents to behave the same as in the centralized case, but the optimal cost paid by VPP is higher due to the payments to the DG owners.
2

Optimization of community based virtual power plant with embedded storage and renewable generation

Okpako, O., Adamu, P.I., Rajamani, Haile S., Pillai, Prashant January 2016 (has links)
No / The current global challenge of climate change has made renewable energy usage very important. There is an ongoing drive for the deployment of renewable energy resource at the domestic level through feed-in tariff, etc. However the intermittent nature of renewable energy has made storage a key priority. In this work, a community having a solar farm with energy storage embedded in the house of the energy consumers is considered. Consumers within the community are aggregated in to a local virtual power plant. Genetic algorithm was used to develop an optimized energy transaction for the virtual power plant. The results shows that it is feasible to have a virtual power plant setup in a local community that involve the use of renewable generation and embedded storage. The result also show that when maximization of battery state of charge is considered as part of an optimization problem in a day ahead market, certain trade-off would have to be made on the profit of the virtual power plant, the incentive of the prosumer, as well as the provision of peak service to the grid.
3

Evaluation of community virtual power plant under various pricing schemes

Okpako, O., Rajamani, Haile S., Pillai, Prashant, Anuebunwa, U.R., Swarup, K.S. 13 October 2016 (has links)
Yes / Technological advancement on the electricity grid has focused on maximizing its use. This has led to the introduction of energy storage. Energy storage could be used to provide both peak and off-peak services to the grid. Recent work on the use of small units of energy storage like battery has proposed the vehicle to grid system. It is propose in this work to have energy storage device embedded inside the house of the energy consumer. In such a system, consumers with battery energy storage can be aggregated in to a community virtual power plant. In this paper, an optimized energy resource allocation algorithm is presented for a virtual power plant using genetic algorithm. The results show that it is critical to have a pricing scheme that help achieve goals for grid, virtual power plant, and consumers. / Mr. Oghenovo Okpako is grateful to the Niger Delta Development Commission of Nigeria for funding the work. The work has been also supported by the British Council and the UK Department of Business innovations and Skills under the GII funding of the SITARA project.
4

Investigation of an optimized energy resource allocation algorithm for a community based virtual power plant

Okpako, O., Rajamani, Haile S., Pillai, Prashant, Anuebunwa, U.R., Swarup, K.S. 01 September 2016 (has links)
Yes / Recently, significant advances in renewable energy generation have made it possible to consider consumers as prosumers. However, with increase in embedded generation, storage of electrical energy in batteries, flywheels and supercapacitors has become important so as to better utilize the existing grid by helping smooth the peaks and troughs of renewable electricity generation, and also of demand. This has led to the possibility of controlling the times when stored energy from these storage units is fed back to the grid. In this paper we look at how energy resource sharing is achieved if these storage units are part of a virtual power plant. In a virtual power plant, these storage units become energy resources that need to be optimally scheduled over time so as to benefit both prosumer and the grid supplier. In this paper, a smart energy resources allocation algorithm is presented for a virtual power plants using genetic algorithms. It is also proposed that the cause of battery depreciation be accounted for in the allocation of discharge rates. The algorithm was tested under various pricing scenarios, depreciation cost, as well as constraint. The results are presented and discussed. Conclusions were drawn, and suggestion for further work was made. / Mr. Oghenovo Okpako is grateful for the support of the Niger Delta Development Commission of Nigeria for supporting the work. The work has been also supported by the British Council and the UK Department of Business innovations and Skills under the GII funding of the SITARA project.
5

Swedish Consumers' Perception of Virtual Power Plants : A mixed-method study of VPPs

Pettersson, Filip, Batti, Roni January 2023 (has links)
The phenomenon of Virtual Power Plant (VPP) has gained increased attention in many parts of the world in recent years. In 2022 the European Union, in response to the rising energy prices as well as the ongoing Russian invasion of Ukraine, set a goal of speeding up the process of creating a digital energy system (European Commission, 2022, p. 20). VPP is the/a solution to the problem, and the EU is set to start its deployment of a common European energy data space no later than 2024 (European Commission, 2022, p. 3).  Previous academic research on VPP has been conducted on the technical aspects of the phenomenon and the adoption of VPP has not been approached from a consumer standpoint. We therefore identified a research gap, since, to the best of our knowledge, no qualitative or quantitative research has been conducted in the area of acceptance of VPP by individuals or households. We could see that there is a need for this type of research due to the goals set by the European Union, and the lack of current research. To fulfill the purpose of our study, we draw on the literatures on supplier switching in homogenous markets, innovation adoption, and technology acceptance to develop a conceptual framework and further empirically extend it via a mixed-method approach. The qualitative component of the study consists of three online on-on-one interviews, conducted with the help of a discussion guide. The interviewees selected were considered to be appropriate participants, suited for our study. The interviews gave us a deeper understanding of how VPP came across to the Swedish consumer, as well as how it was perceived by them. The quantitative study was done by the means of a survey of 75 respondents, enabling us to conduct a set of linear regressions in order to test our hypotheses.  Through our mixed-method study, we were able to develop an integrative framework, showcasing factors related to Swedish consumers’ intention to partake in VPP. We could conclude that Swedish consumers see value in VPP, and that there is curiosity related to the topic which indicates that there is an interest to explore and partake in VPP. We further discuss a range of recommendations to policy-makers and energy providers, as well as the potential contributions of VPP to the two important social aspects: sustainability and energy security.
6

Coordination de GEDs pour la fourniture de services systèmes temps réel / Distributed Energy Resources coordination toward the supply of ancillary services in real-time

Lebel, Gaspard 26 April 2016 (has links)
Les politiques entreprises dans le domaine de la production d’électricité pour lutter contre le changement climatique reposent communément sur le remplacement des moyens de production fossiles et centralisés par de nouveaux moyens de type renouvelables. Ces énergies renouvelables sont en grande partie distribuées dans les réseaux moyenne et basse tension et sont le plus souvent intermittentes (énergies éolienne et photovoltaïque principalement). Les gestionnaires de réseaux s’attentent à ce que ce changement de paradigme induise des difficultés conséquences dans leurs opérations. Les mondes de la recherche et de l’industrie se sont ainsi structurés depuis le milieu des années 2000 afin d’apporter une réponse aux problèmes anticipés. Cette réponse passe notamment par le déploiement de technologies de l’information et de la communication (TIC) dans les réseaux électriques, des centres de contrôle jusqu’au sein même des moyens de production distribués. C’est ce que l’on appelle le Smart Grid. Parmi le champ des possibles du Smart Grid, ces travaux de thèses se sont en particulier attachés à apporter une réponse aux enjeux de stabilité en fréquence du système électrique, mise en danger par la réduction anticipée de l’inertie des systèmes électriques et la raréfaction des moyens de fourniture de réserve primaire (FCR), auxquels incombent le maintien de la fréquence en temps réel. En vue de suppléer les moyens de fourniture de réserve conventionnels et centralisés, il a ainsi été élaboré un concept de coordination de charges électriques délestables distribuées, qui se déconnectent et se reconnectent de manière autonome sur le réseau au gré des variations de fréquence mesurées sur site. Ces modulations de puissance répondent à un schéma préétabli qui dépend de la consommation électrique effective de chacune des charges. Ces travaux ont été complétés d’une étude technico-économique visant à réutiliser cette infrastructure de coordination de charges délestables pour la fourniture de services systèmes ou de produits de gros complémentaires. Ce travail de thèse réalisée au sein des équipes innovation de Schneider Electric et du laboratoire de Génie Electrique de Grenoble (G2Elab), est en lien avec les projets Européens EvolvDSO et Dream, financés dans le cadre du programme FP7 de la Commission Européenne. / Climate change mitigation policies in the power generation industry lead commonly on the replacement of bulk generation assets by Renewable Energy Resources (RES-E). Such RES-E are largely distributed among the medium and low voltage grids and most of them are intermittent like photovoltaic and wind power. System Operators expect that such new power system paradigm induces significant complications in their operations. The communities of research and industry started thus to structure themselves in the mid-2000s in order to respond to these coming issues, notably through the deployment of Information and Communication Technology (ICT) in power systems assets, from the Network Operations Centers (NOCs) down to Distributed Energy Resources (DERs) units. This is the Smart Grid. Among the range of possibilities of the Smart Grid, this Ph.D work aims in priority to provide a solution to handle the issue of frequency stability of the power system that are endangered by the combined loss of inertia of the power system and the phasing-out of conventional assets which used to be in charge of the maintain of the frequency in real time through the supply of Frequency Containment Reserve (FCR). The concept developed lead on a process of coordinated modulation of the level of loads of DERs, whose evolve depending on the system frequency measured in real time on-site. The strategy of modulation of each DER follows a pattern which is determined at the scale of the portfolio of aggregation of the DER, depending on the effective level of load of the DER at normal frequency (i.e. 50Hz in Europe). This work is completed by a cost benefit analysis that assesses the opportunity of sharing of the previous infrastructure of coordinated modulation of DERs for the supply of ancillary services and wholesale products. This thesis conducted within Schneider Electric’s Innovation teams and Grenoble Electrical Engineering Laboratory (G2Elab) is linked with the European projects Dream and EvolvDSO, and funded under European Commission’s FP7 program.
7

台灣電力市場用戶群代表制度之研究 / Analysis of aggregator systems for the Taiwan electricity market

洪穎正, Hung, Ying Cheng Unknown Date (has links)
本研究針對先進國家「用戶群代表」制度之政策與法規進行探討,並進一步探討如何施行於台灣電力市場。首先定義並解釋「用戶群代表」涵意後,整理出先進國家(包含美國、歐盟、德國、澳洲、韓國五個地區與EnerNOC、Comverge、CPower、OhmConnect四個公司)的用戶群代表商業模式案例,藉由文獻分析與個案研究,觀察先進國家政策方向與用戶群代表市場定位差異。同時,本研究由我國用戶群代表相關制度法規,探討用戶群代表於我國電力市場實施之適法性。此外,本研究根據文獻回顧整理出發展用戶群代表制度的關鍵成功因素,並詳細探討我國當前條件是否適合發展。最後針對政府與台電、產業界、學術界、電力用戶的不同角度,提出可行的政策法規建議。 / This thesis explores the policies and regulations of aggregator systems in advanced countries and explores how to implement aggregator system in Taiwan electricity market. In order to achieve this objective, we first define and elaborate the meanings of aggregator. Then, experience and case studies of USA, European Union, Germany, Australia and Korea are studied. In addition, business models of four aggregators, EnerNOC, Comverge, CPower and OhmConnect are presented. Furthermore, we examine current related regulations of an aggregator in Taiwan electricity market for feasibility analysis. In addition, this study summarizes the key success factors of the development of aggregator systems according to the literature review, and discusses in detail whether Taiwan's current conditions are suitable for development. Finally, market models and policy regulations in relation to the aggregator are recommended.
8

Key Factors for a Successful Utility-scale Virtual Power Plant Implementation

Recasens Bosch, Joan January 2020 (has links)
The high penetration of renewable energies (RE) in power systems is increasing the volatile production on the generation side and the presence of distributed energy resources (DER) over the territory. On the other hand, Virtual Power Plants (VPPs) are an aggregation of DER managed as a single entity to promote flexibility services to power systems. Therefore, VPPs are a valid approach to cope with the arising challenges in the power system related to RE penetration. This report defines the concept of a utility-scale VPP, as a tool to stabilize the grid and increase the flexibility capacity in power systems. For this purpose, the report places special emphasis in the use cases that can be developed with a utility-scale VPP. Nevertheless, implementing a utility-scale VPP is a complex procedure, as VPP solutions are highly customizable depending on the scope and the conditions of each project. For this reason, this report analyses the main factors that must be taken into account when implementing a VPP solution. The report concludes that the two most critical factors that define the viability of a VPP project are, first, the energy market design and regulatory framework and second, the technical requirements. These two must always align with the scope of the project and the use cases intended to be developed. Further, other minor factors, including a cost estimate for a VPP solution, are also considered in the report. / Den höga penetrationen av förnybara energier i kraftsystem ökar den flyktiga produktionen på produktionssidan och närvaron av distribuerade energiresurser över territoriet. Å andra sidan är virtuella kraftverk en sammanställning av distribuerade energiresurser som hanteras som en enda enhet för att främja flexibilitetstjänster till kraftsystem. Därför är virtuella kraftverk: er en giltig strategi för att hantera de uppkomna utmaningarna i kraftsystemet relaterat till förnybara energier genomslag. I denna rapport definieras konceptet med en virtuella kraftverk verktygsskala som ett verktyg för att stabilisera nätet och öka flexibilitetskapaciteten i kraftsystem. För detta ändamål lägger rapporten särskild tonvikt på användningsfall som kan utvecklas med en virtuella kraftverk-nytta. Trots det är implementering av en virtuella kraftverknyckelskala en komplex procedur, eftersom virtuella kraftverk-lösningar är mycket anpassningsbara beroende på omfattning och villkor för varje projekt. Av denna anledning analyserar denna rapport de viktigaste faktorerna som måste beaktas vid implementering av en VPP-lösning. Rapporten drar slutsatsen att de två mest kritiska faktorerna som definierar ett virtuella kraftverk projekts livskraft är, dels energimarknadens utformning och regelverk och för det andra de tekniska kraven. Dessa två måste alltid anpassa sig till projektets omfattning och användningsfall som är avsedda att utvecklas. Vidare beaktas även andra mindre faktorer, inklusive en kostnadsuppskattning för en virtuella kraftverk lösning, i rapporten.

Page generated in 0.0589 seconds