• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 267
  • 111
  • 83
  • 50
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 10
  • 9
  • 5
  • 4
  • 3
  • Tagged with
  • 651
  • 111
  • 102
  • 78
  • 68
  • 65
  • 61
  • 60
  • 59
  • 59
  • 57
  • 54
  • 51
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Identification of linear structural models

Creamer, Nelson Glenn January 1987 (has links)
With a great amount of research currently being aimed towards dynamic analysis and control of very large, flexible structures, the need for accurate knowledge of the properties of a structure in terms of the mass, damping, and stiffness matrices is of extreme importance. Typical problems associated with existing structural model identification methods are: (i) non-unique solutions may be obtained when utilizing only free-response measurements (unless some parameters are fixed at their nominal values), (ii) convergence may be difficult to achieve if the initial estimate of the parameters is not "close" to the truth, (iii) physically unrealistic coupling in the system matrices may occur as a consequence of the identification process, (iv) large, highly redundant parameter sets may be required to characterize the system, and (v) large measurement sets may be required. To overcome these problems, a novel identification technique is developed in this dissertation to determine the mass, damping, and stiffness matrices of an undamped, lightly damped, or significantly damped structure from a small set of measurements of both free-response data (natural frequencies, damping factors) and forced-response data (frequency response functions). The identification method is first developed for undamped structures. Through use of the spectral decomposition of the frequency response matrix and the orthogonality properties of the mode shapes, a unique identification of the mass and stiffness matrices is obtained. The method is also shown to be easily incorporated into a substructure synthesis package for identifying high-order systems. The method is then extended to include viscous damped structures. A matrix perturbation approach is developed for lightly damped structures, in which the mass and stiffness matrices are identified using the imaginary components of the measured eigenvalues and, as a post-processor, the damping matrix is obtained from the real components of the measured eigenvalues. For significantly damped structures, the mass, dauping, and stiffness matrices are identified simultaneously. A simple, practical method is also developed for identification of the time-varying relaxation modulus associated with a viscoelastic structure. By assuming time-localized elastic behavior, the relaxation modulus is determined from a series of identification tests performed at various times throughout the response history. Many interesting examples are presented throughout the dissertation to illustrate the applicability and potential of the identification method. It is observed from the numerical results that the uniquely identified structure agrees with simulated measurements of both free and forced·response records. / Ph. D.
252

Temperature dependent stiffness and visco-elastic behaviour of lipid coated microbubbles using atomic force microscopy.

Grant, Colin A., McKendry, J.E., Evans, S.D. 03 November 2011 (has links)
Yes / The compression stiffness of a phospholipid microbubble was determined using force-spectroscopy as a function of temperature. The stiffness was found to decrease by approximately a factor of three from 0.08 N m 1, at 10 C, down to 0.03 N m 1 at 37 C. This temperature dependence indicates that the surface tension of lipid coating is the dominant contribution to the microbubble stiffness. The timedependent material properties, e.g. creep, increased non-linearly with temperature, showing a factor of two increase in creep-displacement, from 24 nm, at 10 C, to 50 nm, at 37 C. The standard linear solid model was used to extract the visco-elastic parameters and their determination at different temperatures allowed the first determination of the activation energy for creep, for a microbubble, to be determined. / EPSRC
253

Comparison of two different indentation techniques in studying the in-situ viscoelasticity behavior of liquid crystals

Soon, C.F., Tee, K.S., Youseffi, Mansour, Denyer, Morgan C.T. 15 September 1900 (has links)
Yes / Liquid crystal is a new emerging biomaterial. The physical property of liquid crystal plays a role in supporting the adhesion of cells. Nano and microball indentation techniques were applied to determine the elastic modulus or viscoelasticity of the cholesteryl ester liquid crystals in the culture media. Nano-indentation results (108 ± 19.78 kPa, N = 20) agreed well with the microball indentation (110 ± 19.95 kPa, N = 60) for the liquid crystal samples incubated for 24 hours at 37o C, respectively. However, nanoindentation could not measure the modulus of the liquid crystal (LC) incubated more than 24 hours. This is due to the decreased viscosity of the liquid crystal after immersion in the cell culture media for more than 24 hours. Alternatively, microball indentation was used and the elastic modulus of the LC immersed for 48 hours was found to decrease to 55 ± 9.99 kPa (N = 60). The microball indentation indicated that the LC did not creep after 40 seconds of indentation. However, the elastic modulus of the LC was no longer measurable after 72 hours of incubation due to the lost of elasticity. Microball indentation seemed to be a reliable technique in determining the elastic moduli of the cholesteryl ester liquid crystals. / Science Fund Vot. No. S024 or Project No. 02- 01-13-SF0104 and FRGS Vot. No. 1482 awarded by Malaysia Ministry of Education
254

Investigations into the mechanics of connective tissue

Pritchard, Robyn January 2015 (has links)
This thesis presents work on investigations into the mechanical properties of connective tissue. A model system of hydrogels was used to investigate how volume change through water flow is coupled to relaxation. This was done using digital image correlation (DIC) and a custom built setup. It was found, in hydrogels, that water loss is directly coupled to an increase in tension and water intake is directly coupled to tension relaxation. The experimental setup was tested by investigating the mechanical properties of the well known material polydimethylsiloxane (PDMS) and the novel materials of carbon nanotube (CNT) elastomers, cholesteric liquid crystal elastomers (CLCEs), and 3D polydomain liquid crystal elastomers (3DLCEs). The setup accurately demonstrated the incompressibility of PDMS, even at short time scales, and demonstrated how DIC can map the inhomogeneity of material by locating clusters of CNTs in CNT elastomers by how they deform. Novel results for 3DLCEs were also found, where it was discovered that there is a softening of the bulk modulus at small time scales resulting in a volume increase following deformation, the bulk modulus then recovers and there is over all no volume change. This is in stark contrast to the typical case, where it is the shear modulus that becomes comparable to the bulk modulus, resulting in increased volume. A theoretical investigation was carried out into critical damping in viscoelastic oscillators, where the aim was to apply to the findings to connective tissue. The fractional Maxwell model and zener model where both solved for, where it was found that damping decreases as the material becomes more solid and the peak of critical damping becomes broader. Finally, investigations into how strain relates to the viscoelastic properties of connective tissue were carried out on horse tendon and rat fascia. How relaxation changes was determined through the relaxation constant, where a large constant means it takes the sample longer to relax and it is more solid like. It was found, that in general, the relaxation constant increases quickly with an imposed strain and then either stabilises or increases more slowly. This growth of relaxation constant also occurs during the initial stages of tissue injury, where irreversible deformation occurs.
255

Partial Slip Contacts in Linear Viscoelasticity

Dayalan, Satish Kumar January 2016 (has links) (PDF)
This work analyzes partial slip contact problems in the theory of linear viscoelasticity using both the semi-analytical method and nite element method. Such problems arise in metal-polymer contacts in orthopedic implants and similar applications. The boundary conditions of such problems are inherently mixed and vary with time, thus restricting the use of classical correspondence principle, which have been the basic approach for most of the solved problems in viscoelasticity. In the present semi-analytical approach, the governing equations for the vis-coelastic partial-slip contact are formulated as a pair of coupled Singular Integral Equations (SIEs) for a pin-plate geometry using the viscoelastic analogues of Green's functions. The formulation is entirely in the time-domain, avoiding Laplace transforms. Both Coulomb and hysteretic e ects are considered, and arbitrary load histories, including the bidirectional pin loads and remote plate stresses, are allowed. Moreover, the contact patch is allowed to advance and recede with no restrictions. The presence of viscoelastic behavior necessitates the application of the stick zone boundary condition in convolved form, and also introduces additional convolved gap terms in the governing equations, which are not present in the elastic case. Transient, as well as steady-state contact tractions, are obtained under load-hold, unload-hold, unload-reload, cyclic bidirectional (fretting) and remote plate loading for a three-element delayed elastic solid. A wide range of loads, loading rates, friction coeficients and the conforming nature of the contact are considered. The contact size, stick-zone size, indenter approach, maximum pressure, Coulomb energy dissipation are tracked during fretting. The edge-of-contact stresses and the subsurface stresses for the viscoelastic plate due to the contact tractions are determined by solving an equivalent traction boundary value problem. It is found that the viscoelastic fretting contact tractions for materials with delayed elastic nature shakedown just like their elastic counterparts. However, the number of cycles to attain shakedown states is strongly dependent on the ratio of the load cycle time to the relaxation time constant of the viscoelastic material. In monotonic load-hold case, the viscoelastic steady-state tractions agree well with the tractions from an equivalent elastic analysis using the shear modulus at infinite time. Whereas, the viscoelastic fretting tractions in shakedown differ considerably from their elastic counterparts. This is due to the fact that the contact patch does not increase monotonically in fretting-type(cyclic) loading. Hence, an approximate elastic analysis misleads to an incorrect edge-of-contact stresses. During fretting, the edge-of-contact hoop stress also shakedown and reaches its peak value at the trailing edge-of-contact when the horizontal pin load reaches its maximum. Moreover, the peak tensile of the edge-of-contact hoop stress increases with the increase in the Coulomb friction coefficient. In cyclic loading, Coulomb dissipation in a cycle at steady-state is almost independent of the rate at which the load is cycled. However, the viscous energy dissipated in a cycle is a strong function of the ratio of the load cycle time to the relaxation time constant. The steady-state cyclic hysteretic energy dissipation typically dominates the cyclic Coulomb dissipation, with a more pronounced difference at slower load cycling. However, despite this, it is essential to model an accurate viscoelastic fretting contacts including the effects of both viscous and Coulomb friction dissipation to obtain accurate contact stresses. A 12-element generalized Maxwell solid with long time scales representing a well characterized viscoelastic material like PMMA is also studied. The material chosen is of slowly relaxing nature and the ratio of the instantaneous shear modulus(G0) to the modulus at the infinite time(G1) is almost equal to 1000. In such cases, the material is effectively always in a transient state, with no steady edge-of-contact. As a consequence, the location of the peak hoop stress keeps on shifting when the load cycle is repeated. Interestingly, the rate at which the viscoelastic material relaxes affects the contact tractions. It is observed that the rapidly relaxing materials show qualitatively different tractions in the partial slip, with local traction spikes close to the edges-of-contact and concomitant high-stress gradients. On the other hand, finite element method is also used to analyze the partial slip viscoelastic contacts. In FEA, the pin-plate geometry is modeled using a custom mesh maker, where a 2D-continuum plane strain element is used for the plate and rigid element for the pin. The technique uses 'ABAQUS Standard' solver to solve the contact problem. Finite element analysis for a wide range of loads comparable with the SIE technique is performed. The tractions and contact sizes for various load cases such as unload-reload, fretting-type cyclic loads from both SIE and FEA agrees well. In certain conditions, there exist multiple contact arcs or stick zones that are currently difficult to solve with SIE's. However, such problems are treated using FEA and one such problem is illustrated.
256

Capillarity and wetting of non-Newtonian droplets

Wang, Yuli January 2016 (has links)
Capillarity and dynamic wetting of non-Newtonian fluids are important in many natural and industrial processes, examples cover from a daily phenomenon as splashing of a cup of yogurt to advanced technologies such as additive manufacturing. The applicable non-Newtonian fluids are usually viscoelastic compounds of polymers and solvents. Previous experiments observed diverse interesting behaviors of a polymeric droplet on a wetted substrate or in a microfluidic device. However, our understanding of how viscoelasticity affects droplet dynamics remains very limited. This work intends to shed light on viscoelastic effect on two small scale processes, i.e., the motion of a wetting contact line and droplet splitting at a bifurcation tip.   Numerical simulation is employed to reveal detailed information such as elastic stresses and interfacial flow field. A numerical model is built, combining the phase field method, computational rheology techniques and computational fluid dynamics. The system is capable for calculation of realistic circumstances such as a droplet made of aqueous solution of polymers with moderate relaxation time, impacting a partially wetting surface in ambient air.   The work is divided into three flow cases. For the flow case of bifurcation tube, the evolution of the interface and droplet dynamics are compared between viscoelastic fluids and Newtonian fluids. The splitting or non-splitting behavior influenced by elastic stresses is analyzed. For the flow case of dynamic wetting, the flow field and rheological details such as effective viscosity and normal stress difference near a moving contact line are presented. The effects of shear-thinning and elasticity on droplet spreading and receding are analyzed, under inertial and inertialess circumstances. In the last part, droplet impact of both Newtonian and viscoelastic fluids are demonstrated. For Newtonian droplets, a phase diagram is drawn to visualize different impact regions for spreading, splashing and gas entrapment. For viscoelastic droplets, the viscoelastic effects on droplet deformation, spreading radius and contact line motion are revealed and discussed. / <p>QC 20160329</p>
257

Non-classical problems for viscoelastic solids with microstructure

Svanadze, Maia 16 October 2014 (has links)
No description available.
258

Temperature Effects in Optical Fiber Dispersion Compensation Modules

Shenouda, Mikhail 07 1900 (has links)
This thesis presents the results for the temperature variation of the Differential Group Delay (DGD) measurements of a Dispersion Compensation Module (DCM) and interprets the results with a theoretical DGD model based on glass viscoelastic properties and estimated values of some of glass parameters. The results of our analysis demonstrate the existence of long birefringence relaxation times on the order of many hours in response to temperature changes. These results could be of significance in interpreting the behavior of optical fiber systems.
259

Long-term changes in the Coulomb failure function on inland active faults in southwest Japan due to east-west compression and interplate earthquakes

Hirahara, Kazuro, Fukahata, Yukitoshi, Shikakura, Yosuke 01 1900 (has links)
No description available.
260

Investigation of the effect of relative humidity on additive manufactured polymers by depth sensing indentation

Altaf, Kazim January 2011 (has links)
Additive manufacturing methods have been developed from rapid prototyping techniques and are now being considered as alternatives to conventional techniques of manufacturing. Stereolithography is one of the main additive methods and is considered highly accurate and consistent. Polymers are used as stereolithography materials and exhibit features such as high strength-to-weight ratio, corrosion resistance, ease of manufacturing and good thermal and electrical resistance properties. However, they are sensitive to environmental factors such as temperature, moisture and UV light, with moisture being identified as one of the most important factors that affect their properties. Moisture generally has an adverse effect on the mechanical properties of polymers. Investigation of the effects of moisture on polymers can be carried out using a number of experimental techniques; however, the benefits of the depth sensing indentation method over bulk tests include its ability to characterise various mechanical properties in a single test from only a small volume of material and the investigation of spatial variation in mechanical properties near the surface. The aim of this research was to investigate the effects of varying relative humidity on the indentation behaviour of stereolithography polymers and to develop a modelling methodology that can predict this behaviour under various humidities. It was achieved by a combination of experimental and numerical methods. Depth sensing indentation experiments were carried out at 33.5 %, 53.8 %, 75.3 % and 84.5 % RH (relative humidity) and 22.5 °C temperature to investigate the effects of varying humidity on the micron scale properties of the stereolithography resin, Accura 60. In order to minimise the effects of creep on the calculated properties, appropriate loading and unloading rates with suitable dwell period were selected and indentation data was analysed using the Oliver and Pharr method (1992). A humidity control unit fitted to the machine was used to condition the samples and regulate humidity during testing. Samples were also preconditioned at 33.5 %, 53.8 %, 75.3 % and 84.5 % RH using saturated salt solutions and were tested at 33.5 % RH using humidity control unit. It was seen that properties such as indentation depth increased and contact iv hardness and contact modulus decreased with increasing RH. The samples conditioned and tested using the humidity control unit at high RH showed a greater effect of moisture than the preconditioned samples tested at 33.5 % RH. This was because the samples preconditioned at high RH exhibited surface desorption of moisture when tested at ambient RH, resulting in some recovery of the mechanical properties. In order to investigate these further, tests were performed periodically on saturated samples after drying. Ten days drying of samples conditioned for five days at 84.5 % RH provided significant, though not complete, recovery in the mechanical properties. These tests confirmed that Accura 60 is highly hygroscopic and its mechanical properties are a function of RH and removal of moisture leads to a significant recovery of the original mechanical properties.

Page generated in 0.0405 seconds