Spelling suggestions: "subject:"viscohyperelasticity"" "subject:"viscohyperélasticité""
1 |
Finite Element Modeling of the Plantar Fascia: A Viscohyperelastic ApproachKnapp, Alexander 01 January 2017 (has links)
The present work details the creation and analysis of a finite element model of the foot, wherein the plantar fascia was modeled as a viscohyperelastic solid. The objective of this work was to develop a fully functional CAD and Finite Element Model of the foot and plantar fascia for analysis by examining the transient stresses on the plantar fascia through the use of a viscohyperelastic material model. The model’s geometry was developed through the use of image processing techniques with anatomical images provided by the National Institutes of Health. The finite element method was used to analyze the transient response of the plantar fascia during loading. As a first step towards modeling the transient response of the mechanical behavior of the plantar fascia under dynamic loadings, standing conditions were used to analyze the relaxation of the plantar fascia over a time period of 120 seconds (which is the steady-state relaxation time of the plantar fascia). This study resulted in a fully functional model with transient stress data on the behavior of the plantar fascia during loading, along with stress and deformation data for the bones and soft tissue of the foot. The results obtained were similar to that recorded in literature. This model is the first step towards fully characterizing the mechanics of the plantar fascia so as to develop novel treatment methods for plantar fasciitis, and can be applied to future studies to develop novel orthotic devices and surgical techniques for the treatment of and prevention of plantar fasciitis.
|
2 |
Effets couplés de la température et de la vitesse de déformation sur le comportement mécanique non-linéaire des polymères amorphes : Caractérisation expérimentale et modélisation de la superposition vitesse de déformation-température / Coupled temperature and strain rate effects on non-linear mechanical behaviour of amorphous polymers : Experimental characterisation and modelling of strain rate-temperature superpositionFederico, Carlos 18 June 2018 (has links)
L’objectif de cette thèse est de proposer une stratégie simplifiée et précise pour caractériser et modéliser le comportement mécanique des polymères amorphes de l'état quasi-fluide à l'état solide.L'étude a été réalisée sur des PMMA de masses molaires et de degré de réticulations différentes.D’abord, le comportement mécanique dans le domaine viscoélastique linéaire est étudié à l'aide de tests DMTA et rhéologiques. Il ressort de l’étude que l'augmentation de la masse molaire et du degré de réticulation augmentait les modules de stockage et de perte en tant que la transition α. En parallèle, l'utilisation du principe de superposition temps-température a permis de déterminer «des vitesses de déformation équivalentes à la température de référence».Ensuite, le comportement mécanique à grande déformation est étudié par essais cycliques en traction uni-axial et de cisaillement à haute température et couplés à la DIC. De plus, les effets de la vitesse de déformation et de la température ont été couplés grâce à "vitesse de déformation équivalent à la température de référence" extrait des observations dans le domaine linéaire. Les résultats ont montré que cibler la même vitesse de déformation équivalente conduira aux mêmes courbes contrainte-déformation, c'est-à-dire la même réponse mécanique. Ceci permet de réduire le nombre de tests expérimentaux nécessaires pour caractériser le comportement mécanique des polymères amorphes.Enfin, un modèle basée dans un cadre thermodynamique a été utilisée pour reproduire la réponse mécanique des PMMAs à grande déformation. Le modèle présentait un bon accord avec les données expérimentales, étant capable de reproduire des comportements visco-élasto-plastiques, viscoélastiques, hyperélastiques et visco-hyperelastiques pour la traction cyclique. / The present PhD thesis proposes a simplified and accurate strategy for characterising and modelling the mechanical behaviour of amorphous polymers from the quasi-fluid state up to the solid state.The study was carried out on PMMAs with different molar masses and crosslinking degree.First, we addressed the mechanical behaviour in the linear viscoelastic domain using DMTA and rheological tests. Results showed that increasing the molar mas and crosslinking degree increased the elastic and loss moduli as the α-transition. In parallel, using the time-temperature superposition principle allowed determining “equivalent strain rates at reference temperature”.Then, we performed uniaxial tensile and shear uploading-unloading tests at high temperature and coupled with DIC, to characterise the mechanical behaviour at large strain. Additionally, strain rate and temperature effects were coupled by means of the “equivalent strain rate at reference temperature” extracted from observations in the linear domain. Results showed that targeting the same equivalent strain rate lead to the same stress-strain curves, i.e. same mechanical response. This allows reducing the number of experimental tests needed to characterise the mechanical behaviour of amorphous polymers.Finally, a constitutive modelling based in a thermodynamics framework, was used to reproduce the mechanical response of the PMMAs at large deformation. The model presented a good agreement with the experimental data, being able to reproduce viscoelastoplastic, viscoelastic, hyperelastic and viscohyperelastic behaviours for cyclic loading tensile.
|
Page generated in 0.0563 seconds