• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 19
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 32
  • 28
  • 26
  • 20
  • 18
  • 17
  • 14
  • 11
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Técnicas computacionais de apoio à classificação visual de imagens e outros dados / Computational techniques to support classification of images and other data

Paiva, José Gustavo de Souza 20 December 2012 (has links)
O processo automático de classificação de dados em geral, e em particular de classificação de imagens, é uma tarefa computacionalmente intensiva e variável em termos de precisão, sendo consideravelmente dependente da configuração do classificador e da representação dos dados utilizada. Muitos dos fatores que afetam uma adequada aplicação dos métodos de classificação ou categorização para imagens apontam para a necessidade de uma maior interferência do usuário no processo. Para isso são necessárias mais ferramentas de apoio às várias etapas do processo de classificação, tais como, mas não limitadas, a extração de características, a parametrização dos algoritmos de classificação e a escolha de instâncias de treinamento adequadas. Este doutorado apresenta uma metodologia para Classificação Visual de Imagens, baseada na inserção do usuário no processo de classificação automática através do uso de técnicas de visualização. A ideia é permitir que o usuário participe de todos os passos da classificação de determinada coleção, realizando ajustes e consequentemente melhorando os resultados de acordo com suas necessidades. Um estudo de diversas técnicas de visualização candidatas para a tarefa é apresentado, com destaque para as árvores de similaridade, sendo apresentadas melhorias do algoritmo de construção em termos de escalabilidade visual e de tempo de processamento. Adicionalmente, uma metodologia de redução de dimensionalidade visual semi-supervisionada é apresentada para apoiar, pela utilização de ferramentas visuais, a criação de espaços reduzidos que melhorem as características de segregação do conjunto original de características. A principal contribuição do trabalho é um sistema de classificação visual incremental que incorpora todos os passos da metodologia proposta, oferecendo ferramentas interativas e visuais que permitem a interferência do usuário na classificação de coleções incrementais com configuração de classes variável. Isso possibilita a utilização do conhecimento do ser humano na construção de classificadores que se adequem a diferentes necessidades dos usuários em diferentes cenários, produzindo resultados satisfatórios para coleções de dados diversas. O foco desta tese é em categorização de coleções de imagens, com exemplos também para conjuntos de dados textuais / Automatic data classification in general, and image classification in particular, are computationally intensive tasks with variable results concerning precision, being considerably dependent on the classifier´s configuration and data representation. Many of the factors that affect an adequate application of classification or categorization methods for images point to the need for more user interference in the process. To accomplish that, it is necessary to develop a larger set of supporting tools for the various stages of the classification set up, such as, but not limited to, feature extraction, parametrization of the classification algorithm and selection of adequate training instances. This doctoral Thesis presents a Visual Image Classification methodology based on the user´s insertion in the classification process through the use of visualization techniques. The idea is to allow the user to participate in all classification steps, adjusting several stages and consequently improving the results according to his or her needs. A study on several candidate visualization techniques is presented, with emphasis on similarity trees, and improvements of the tree construction algorithm, both in visual and time scalability, are shown. Additionally, a visual semi-supervised dimensionality reduction methodology was developed to support, through the use of visual tools, the creation of reduced spaces that improve segregation of the original feature space. The main contribution of this work is an incremental visual classification system incorporating all the steps of the proposed methodology, and providing interactive and visual tools that permit user controlled classification of an incremental collection with evolving class configuration. It allows the use of the human knowledge on the construction of classifiers that adapt to different user needs in different scenarios, producing satisfactory results for several data collections. The focus of this Thesis is image data sets, with examples also in classification of textual collections
12

Super Spider: uma ferramenta versátil para exploração de dados multi-dimensionais representados por malhas de triângulos / Super Spider: a versatile tool for multi-dimensional data represented as triangle meshes

Watanabe, Lionis de Souza 11 April 2007 (has links)
Este trabalho apresenta o Super Spider: um sistema de exploração visual baseado no Spider Cursor, que abrange várias técnicas interativas da área de Visualização Computacional e conta com novos recursos de auxílio à investigação visual, além de ser uma ferramenta portável e flexível. / This work presents the Super Spider: a visual exploration system, based on Spider Cursor, that embraces many interactive techniques of Computer Visualization area and take into account innovative techniques to aid visual investigation, besides consisting of a portable and flexible tool.
13

Analytical tools and information-sharing methods supporting road safety organizations

Abugessaisa, Imad January 2008 (has links)
A prerequisite for improving road safety are reliable and consistent sources of information about traffic and accidents, which will help assess the prevailing situation and give a good indication of their severity. In many countries there is under-reporting of road accidents, deaths and injuries, no collection of data at all, or low quality of information. Potential knowledge is hidden, due to the large accumulation of traffic and accident data. This limits the investigative tasks of road safety experts and thus decreases the utilization of databases. All these factors can have serious effects on the analysis of the road safety situation, as well as on the results of the analyses. This dissertation presents a three-tiered conceptual model to support the sharing of road safety–related information and a set of applications and analysis tools. The overall aim of the research is to build and maintain an information-sharing platform, and to construct mechanisms that can support road safety professionals and researchers in their efforts to prevent road accidents. GLOBESAFE is a platform for information sharing among road safety organizations in different countries developed during this research. Several approaches were used, First, requirement elicitation methods were used to identify the exact requirements of the platform. This helped in developing a conceptual model, a common vocabulary, a set of applications, and various access modes to the system. The implementation of the requirements was based on iterative prototyping. Usability methods were introduced to evaluate the users’ interaction satisfaction with the system and the various tools. Second, a system-thinking approach and a technology acceptance model were used in the study of the Swedish traffic data acquisition system. Finally, visual data mining methods were introduced as a novel approach to discovering hidden knowledge and relationships in road traffic and accident databases. The results from these studies have been reported in several scientific articles.
14

Diagnostic tool for trucks : -from idea to demonstrator

Wang, Qi, Ma, Yinrong January 2013 (has links)
Vehicles can end up in unplanned visits to workshops due to the driver not checking the vehicle status before using it in traffic. There are many factors not only caused by the environment but also due to the lack of tools that simplify or reminds about beforehand inspections. The purpose of this project was to introduce a smart-phone application that can display the health state (or related parameters) of a vehicle in a brief way and indicate if a part or function of the truck is not working properly. There are six functions in the application. Function status and function fault codes can display information about vehicles by giving two-dimensional plots about vehicle data, while function VSR displays some information in the form of text. Also, the user can submit their feedback through function comment. Function position is designed to give the users specific perspectives on an imported map based on their different user identity. Function check reminds about inspections that must be made before setting out on a driving mission. The application allows bus drivers and managers to continuously monitor different vehicle parameters with a statistical summary over time, as well as providing a method for following-up that drivers perform basic checks on the vehicle before it is taken into traffic.
15

A visualization framework for exploring correlations among atributes of a large dataset and its applications in data mining

Techaplahetvanich, Kesaraporn January 2007 (has links)
[Truncated abstract] Many databases in scientific and business applications have grown exponentially in size in recent years. Accessing and using databases is no longer a specialized activity as more and more ordinary users without any specialized knowledge are trying to gain information from databases. Both expert and ordinary users face significant challenges in understanding the information stored in databases. The databases are so large in most cases that it is impossible to gain useful information by inspecting data tables, which are the most common form of storing data in relational databases. Visualization has emerged as one of the most important techniques for exploring data stored in large databases. Appropriate visualization techniques can reveal trends, correlations and associations in data that are very difficult to understand from a textual representation of the data. This thesis presents several new frameworks for data visualization and visual data mining. The first technique, VisEx, is useful for visual exploration of large multi-attribute datasets and especially for exploring the correlations among the attributes in such datasets. Most previous visualization techniques can display correlations among two or three attributes at a time without excessive screen clutter. ... Although many algorithms for mining association rules have been researched extensively, they do not incorporate users in the process and most of them generate a large number of association rules. It is quite often difficult for the user to analyze a large number of rules to identify a small subset of rules that is of importance to the user. In this thesis I present a framework for the user to interactively mine association rules visually. Another challenging task in data mining is to understand the correlations among the mined association rules. It is often difficult to identify a relevant subset of association rules from a large number of mined rules. A further contribution of this thesis is a simple framework in the VisAR system that allows the user to explore a large number of association rules visually. A variety of businesses have adopted new technologies for storing large amounts of data. Analysis of historical data quite often offers new insights into business processes that may increase productivity and profit. On-line analytical processing (OLAP) has become a powerful tool for business analysts to explore historical data. Effective visualization techniques are very important for supporting OLAP technology. A new technique for the visual exploration of OLAP data cubes is also presented in this thesis.
16

Técnicas computacionais de apoio à classificação visual de imagens e outros dados / Computational techniques to support classification of images and other data

José Gustavo de Souza Paiva 20 December 2012 (has links)
O processo automático de classificação de dados em geral, e em particular de classificação de imagens, é uma tarefa computacionalmente intensiva e variável em termos de precisão, sendo consideravelmente dependente da configuração do classificador e da representação dos dados utilizada. Muitos dos fatores que afetam uma adequada aplicação dos métodos de classificação ou categorização para imagens apontam para a necessidade de uma maior interferência do usuário no processo. Para isso são necessárias mais ferramentas de apoio às várias etapas do processo de classificação, tais como, mas não limitadas, a extração de características, a parametrização dos algoritmos de classificação e a escolha de instâncias de treinamento adequadas. Este doutorado apresenta uma metodologia para Classificação Visual de Imagens, baseada na inserção do usuário no processo de classificação automática através do uso de técnicas de visualização. A ideia é permitir que o usuário participe de todos os passos da classificação de determinada coleção, realizando ajustes e consequentemente melhorando os resultados de acordo com suas necessidades. Um estudo de diversas técnicas de visualização candidatas para a tarefa é apresentado, com destaque para as árvores de similaridade, sendo apresentadas melhorias do algoritmo de construção em termos de escalabilidade visual e de tempo de processamento. Adicionalmente, uma metodologia de redução de dimensionalidade visual semi-supervisionada é apresentada para apoiar, pela utilização de ferramentas visuais, a criação de espaços reduzidos que melhorem as características de segregação do conjunto original de características. A principal contribuição do trabalho é um sistema de classificação visual incremental que incorpora todos os passos da metodologia proposta, oferecendo ferramentas interativas e visuais que permitem a interferência do usuário na classificação de coleções incrementais com configuração de classes variável. Isso possibilita a utilização do conhecimento do ser humano na construção de classificadores que se adequem a diferentes necessidades dos usuários em diferentes cenários, produzindo resultados satisfatórios para coleções de dados diversas. O foco desta tese é em categorização de coleções de imagens, com exemplos também para conjuntos de dados textuais / Automatic data classification in general, and image classification in particular, are computationally intensive tasks with variable results concerning precision, being considerably dependent on the classifier´s configuration and data representation. Many of the factors that affect an adequate application of classification or categorization methods for images point to the need for more user interference in the process. To accomplish that, it is necessary to develop a larger set of supporting tools for the various stages of the classification set up, such as, but not limited to, feature extraction, parametrization of the classification algorithm and selection of adequate training instances. This doctoral Thesis presents a Visual Image Classification methodology based on the user´s insertion in the classification process through the use of visualization techniques. The idea is to allow the user to participate in all classification steps, adjusting several stages and consequently improving the results according to his or her needs. A study on several candidate visualization techniques is presented, with emphasis on similarity trees, and improvements of the tree construction algorithm, both in visual and time scalability, are shown. Additionally, a visual semi-supervised dimensionality reduction methodology was developed to support, through the use of visual tools, the creation of reduced spaces that improve segregation of the original feature space. The main contribution of this work is an incremental visual classification system incorporating all the steps of the proposed methodology, and providing interactive and visual tools that permit user controlled classification of an incremental collection with evolving class configuration. It allows the use of the human knowledge on the construction of classifiers that adapt to different user needs in different scenarios, producing satisfactory results for several data collections. The focus of this Thesis is image data sets, with examples also in classification of textual collections
17

Super Spider: uma ferramenta versátil para exploração de dados multi-dimensionais representados por malhas de triângulos / Super Spider: a versatile tool for multi-dimensional data represented as triangle meshes

Lionis de Souza Watanabe 11 April 2007 (has links)
Este trabalho apresenta o Super Spider: um sistema de exploração visual baseado no Spider Cursor, que abrange várias técnicas interativas da área de Visualização Computacional e conta com novos recursos de auxílio à investigação visual, além de ser uma ferramenta portável e flexível. / This work presents the Super Spider: a visual exploration system, based on Spider Cursor, that embraces many interactive techniques of Computer Visualization area and take into account innovative techniques to aid visual investigation, besides consisting of a portable and flexible tool.
18

Integrando projeções multidimensionais à analise visual de redes sociais / Integrating multidimensional projections into visual analysis of social networks

Gabriel de Faria Andery 13 September 2010 (has links)
Há várias décadas, pesquisadores em ciências sociais buscam formas gráficas para expressar as relações humanas na sociedade. O advento do computador e, mais recentemente, da internet, possibilitou o surgimento de um campo que tem despertado a atenção de estudiosos das áreas de visualização de informação e de ciências sociais, o da visualização de redes sociais. Esse campo tem o potencial de revelar e explorar padrões que podem beneficiar um número muito grande de aplicações e indivíduos em áreas tais como comércio, segurança em geral, redes de conhecimento e pesquisa de mercado. Grande parte dos algoritmos de visualização de redes sociais são baseados em grafos, destacando relacionamentos entre indivíduos e grupos de indivíduos, mas dando pouca atenção aos seus demais atributos. Assim, este trabalho apresenta um conjunto de soluções para representar e explorar visualmente redes sociais levando em consideração tais atributos. A primeira solução faz uso de redes heterogêneas, onde tanto indivíduos quanto comunidades são representados no grafo; a segunda solução utiliza técnicas de visualização baseadas em projeção multidimensional, que promovem o posicionamento dos dados no plano de acordo com algum critério de similaridade baseado em atributo; e a última solução coordena múltiplas visões para focar rapidamente em regiões de interesse. Os resultados indicam que as soluções proveem um poder de representação e identificação de conceitos não facilmente detectados por formas convencionais de visualização e exploração de grafos, com indícios fornecidos através dos estudos de caso e da realização de avaliações com usuários. Este trabalho fornece um estudo das áreas de visualização em grafos para a análise de redes sociais bem como uma implementação das soluções de integração da visualização em redes com as projeções multidimensionais / For decades, social sciences researchers have searched for graphical forms to express human social relationships. The development of computer science and more recently of the Internet has given rise to a new field of research for visualization and social sciences professionals, that of social network visualization. This field can potentially offer new opportunities in reveal new patterns that can benefit a large number of applications and individuals in fields such as commerce, security, knowledge networks and marketing. A large part of social network visualization algorithms and systems relies on graph representations, highlighting relationships amongst individuals and groups of individuals, but mostly neglecting the other available attributes of individuals. Thus, this work presents a set of tools to represent and explore social networks visually, taking into consideration the attributes of the nodes. The first technique employs heterogeneous networks, where both individuals and communities are represented in the graph; the second solution uses visualization techniques based on multidimensional projection, which promote the placement of data in the plane according to some similarity criterion based on attribute; still another proposed technique coordinates multiple views in order to speed up focus in regions of interest in the data sets. The results indicate that the solutions promote high degree of representation power and that concept identification not easily obtained via other methods is possible; the evidence comes from case studies as well as a user evaluation. This work includes a study in the area of graph visualization for social network analysis as well as a system implementing the proposed solutions, that integrate network visualization and multidimensional projections to extract patterns from social networks
19

Visual Data-Driven Millimeter Wave Communication Systems / 画像データ駆動ミリ波通信システム

Koda, Yusuke 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23329号 / 情博第765号 / 新制||情||130(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 守倉 正博, 教授 原田 博司, 教授 大木 英司 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
20

Time-sensitive Information Communication, Sensing, and Computing in Cyber-Physical Systems

Li, Xinfeng 08 September 2014 (has links)
No description available.

Page generated in 0.0574 seconds