• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graph visualization with OpenGL

Ahlgren, Hannes January 2005 (has links)
<p>Vizz3D is a 3D graphics code analysis tool, developed at Växjö University that optionally can use Java3D or OpenGL. However, initially Java3D was the only programming interface used. No other version was considered. Therefore the applications structure was built with the Java3D way of thought in mind. But code visualization with 3D graphics can be a demanding task for the computers processor and its graphics hardware and Java3D is known to be somewhat inefficient. So an OpenGL version was introduced.</p><p>This thesis reflects on the work restructuring the application’s code to fit both versions within Vizz3D in a structured and object-oriented way. The thesis shows the efforts to be taken to make an existing ever evolving tool easily extendible to other API’s. Additional aspects of OpenGL specific implementations are discussed throughout the thesis.</p>
2

Graph visualization with OpenGL

Ahlgren, Hannes January 2005 (has links)
Vizz3D is a 3D graphics code analysis tool, developed at Växjö University that optionally can use Java3D or OpenGL. However, initially Java3D was the only programming interface used. No other version was considered. Therefore the applications structure was built with the Java3D way of thought in mind. But code visualization with 3D graphics can be a demanding task for the computers processor and its graphics hardware and Java3D is known to be somewhat inefficient. So an OpenGL version was introduced. This thesis reflects on the work restructuring the application’s code to fit both versions within Vizz3D in a structured and object-oriented way. The thesis shows the efforts to be taken to make an existing ever evolving tool easily extendible to other API’s. Additional aspects of OpenGL specific implementations are discussed throughout the thesis.
3

Maintenance of a 3D Visualization System

Wang, Cishen January 2008 (has links)
<p>Vizz3D is a powerful 3D visualization system. The current version is neither perfect nor up-to-date. Furthermore, some important features are missing. In order to keep the tool valuable it needs to be maintained. I implemented a new feature allowing to save and load the view port in the graph to control the camera position. I also improved the CPU utilization and the navigation system to solve the limitations in Vizz3D and to improve the overall performance.</p>
4

Optimisation of a Graph Visualization Tool: Vizz3D

Carlsson, Johan January 2006 (has links)
<p>Vizz3D is a graph visualization tool developed at Växjö University. It is used to visualize different aspects of software systems in 3D, based on the static analysis of source code. It can optionally use Java3D or OpenGL as a graphics library.</p><p>In order to visualize huge 3D structures performance is very important. This comes from the fact that the structures must be redrawn with no delay when a user interacts with the system. If there were a delay the user would loose the cognitive orientation because his interaction and the feedback would not fit. Vizz3D was not capable to run huge visualizations fast enough, and therefore careful optimisation was essential. Additionally, the Vizz3D tool is just at the beginning of its software life cycle.</p><p>For optimisation, JOGL (Java Bindings for OpenGL) was chosen. The extension with a JOGL version was necessary since the GL4Java (OpenGL for Java) wrapper used for the implementation of Vizz3D is no longer supported. JOGL was therefore needed for assuring future maintainability.</p><p>The JOGL version of Vizz3D was optimised to be able to visualize huge graphs with acceptable performance. To determine what areas of Vizz3D that consumed most of its resources, the process of profiling were used. The system performance was improved according to several aspects: Computational performance, Scalability, Perceived performance, RAM footprint and Start-up time. The results were then evaluated by using benchmarking techniques. After optimisation, the performance of Vizz3D was improved a lot which led to that huge graphs now could be visualized with acceptable performance.</p>
5

Optimisation of a Graph Visualization Tool: Vizz3D

Carlsson, Johan January 2006 (has links)
Vizz3D is a graph visualization tool developed at Växjö University. It is used to visualize different aspects of software systems in 3D, based on the static analysis of source code. It can optionally use Java3D or OpenGL as a graphics library. In order to visualize huge 3D structures performance is very important. This comes from the fact that the structures must be redrawn with no delay when a user interacts with the system. If there were a delay the user would loose the cognitive orientation because his interaction and the feedback would not fit. Vizz3D was not capable to run huge visualizations fast enough, and therefore careful optimisation was essential. Additionally, the Vizz3D tool is just at the beginning of its software life cycle. For optimisation, JOGL (Java Bindings for OpenGL) was chosen. The extension with a JOGL version was necessary since the GL4Java (OpenGL for Java) wrapper used for the implementation of Vizz3D is no longer supported. JOGL was therefore needed for assuring future maintainability. The JOGL version of Vizz3D was optimised to be able to visualize huge graphs with acceptable performance. To determine what areas of Vizz3D that consumed most of its resources, the process of profiling were used. The system performance was improved according to several aspects: Computational performance, Scalability, Perceived performance, RAM footprint and Start-up time. The results were then evaluated by using benchmarking techniques. After optimisation, the performance of Vizz3D was improved a lot which led to that huge graphs now could be visualized with acceptable performance.
6

Maintenance of a 3D Visualization System

Wang, Cishen January 2008 (has links)
Vizz3D is a powerful 3D visualization system. The current version is neither perfect nor up-to-date. Furthermore, some important features are missing. In order to keep the tool valuable it needs to be maintained. I implemented a new feature allowing to save and load the view port in the graph to control the camera position. I also improved the CPU utilization and the navigation system to solve the limitations in Vizz3D and to improve the overall performance.

Page generated in 0.0207 seconds