Spelling suggestions: "subject:"mms"" "subject:"mems""
21 |
Prospecção geoquímica: estaurolita, ilmenita e magnetita como minerais traçadores para depósitos do tipo VMS / Chemistry prospection: staurolite, ilmenite, magnetite guide minerals for VMS depositsDiana Magalhães Cunha Rodrigues 29 September 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Conselho Nacional de Desenvolvimento Científico e Tecnológico / A região de Itutinga foi alvo de estudos prospectivos por parte da empresa BP mineração na década de 80, onde foram encontradas mineralizações em lentes de sulfetos metálicos (Zn-Cu-Ag-Fe) associados a rochas komatiíticas peridotíticas e basaltos toleíticos (anfibolitos) do greenstone belts, nas proximidades da fazenda São Jerônimo, enquadrando-se em um depósito do tipo VMS. A partir destas informações encontradas na literatura propôs-se estudar a estaurolita, a magnetita e a ilmenita para, a partir da determinação do seu conteúdo em zinco, indicar a aplicabilidade destes três minerais como traçadores desses tipos de depósitos. Para isso foram coletadas amostras de sedimentos de corrente e concentrados de batéia na região próxima à ocorrência, no entorno da cidade de Itutinga, e também em uma região próxima a cidade de Itumirim, já que existem semelhanças litológicas entre as duas áreas. Os sedimentos de corrente, as frações magnéticas e as frações de 0,3A (separador eletromagnético Frantz) foram enviados para análises químicas por absorção atômica e ICP-OES. Os concentrados de batéia foram descritos, separando-se cristais de estaurolita de cada amostra coletada, e analisando-os em MEV-EDS para determinação da química mineral. Os resultados dos sedimentos de corrente apontaram que os pontos da fazenda São Jerônimo (ME-03, Itutinga 51,7 ppm de Zn) e o ponto do Ribeirão Santa Cruz, (ME-06, Itumirim 36,1 ppm de Zn) foram os que apresentaram melhores resultados, indicando anomalias em zinco nas duas áreas estudadas . As estaurolitas, retiradas dos concentrados de batéia de cada ponto estudado, foram divididas em três conjuntos, de acordo com os teores de ZnO encontrados: 1 - entre 2,96% e 3,25% de ZnO em peso; 2 - entre 2,03% e 2,76% de ZnO em peso; 3 - < 1,67% de ZnO em peso, sendo comparável com outras estaurolitas encontradas em diversos depósitos de Zn do mundo, como Dry River, Austrália e Palmeirópolis Goiás. Assim, as estaurolitas apresentam bons resultados como minerais indicadores na área estudada. Em relação as magnetitas e ilmenitas estudadas, o número de amostras coletadas no presente estudo foram muito pequenas para se ter informações conclusivas sobre o papel destes minerais como traçadores. Por outro lado, os resultados das análises químicas nos concentrados de ilmenita (até 856 ppm de Zn) e nos concentrados de magnetita (até 216 ppm de Zn), indicam a disponibilidade deste metal nas áreas estudadas. Assim, é possível se detectar a presença do zinco por dois meios: através de sedimentos de corrente, através de halos de dispersão química do elemento zinco, e através dos minerais resistatos (estaurolita zincífera, magnetita e ilmenita), a partir de uma dispersão clástica do grão. / The Itutinga region was studied for BP mineration in 80s , where they found sulphide mineralization in lenses (Zn-Cu-Ag-Fe) associated with komatiitic peridotite rocks and tholeitic basalts (amphibolites) of greenstone belts, near of Fazenda São Jerônimo. With this information in the literature the propose is study the staurolite, magnetite and ilmenite for indicating the applicability of these three minerals as tracers of these types of mineralization. For this, samples of stream sediment and panning concentrates in the region near the city of Itutinga, and also in a region near the city of Itumirim. The stream current, magnetic fractions and ilmenite fractions were sent to chemistry analyses (Atomic absorption and ICP-OES), and the panning concentrates were analyzed for the separating of staurolite crystals, and sent to SEM-EDS. The stream sediments results showed that the point of Fazenda São Jerônimo (ME-03, Itutinga 51,7 ppm of Zn) and the point of Ribeirão Santa Cruz (ME-06, Itumirim 36,1 ppm of Zn) were presented the best result. The staurolite of panning concentrates were divided into three groups according to levels of ZnO matched: 1 - between 2.96% and 3.25% by weight of ZnO, 2 - from 2, 03% and 2.76% by weight of ZnO, 3 - <1.67% ZnO by weight, comparable with other staurolite found in many zinc deposits in the world, such as Dry River, Australia and Palmeirópolis Goiás. Thus, the staurolite show good results as indicator minerals in the area. With respect to magnetite and ilmenite concentrates, the number of samples collected in both areas was too small to have conclusive information. On the other hand, the results of the chemical ilmenite (up to 856 ppm Zn) and magnetite (up to 216 ppm Zn), indicate the availability of this metal in the areas studied. Thus, it is possible to detect the presence of zinc by two means: through stream sediments through chemical dispersion halos of zinc, minerals and through resistive minerals (zincian staurolite, magnetite and ilmenite), from a crystal clastic dispersion.
|
22 |
ITS VEHICLE SUBSYSTEM BASED ON GPRSZhang, Zhengxuan, Zhang, Qishan 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The IMS(In-vehicle Monitoring Subsystem) of VMS(Vehicle Monitoring System) is the multifunctional and complex integrate embedded system, which sends the data of various in-vehicle devices to MC(Monitoring Center) and accepts commands and schedules from there. Using GPRS platform in this system make it possible for real-time and effective data transmission. This paper proposes some new insights on IMS applied to public traffic, including its software and hardware composition, and its realization method.
|
23 |
Ore Petrology and Alteration of the West Ansil Volcanic-hosted Massive Sulphide Deposit of the Noranda Mining Camp, Rouyn-Noranda, QuebecBoucher, Stéphanie 18 February 2011 (has links)
The West Ansil deposit was the first Cu discovery in 25 years in the Noranda Central Camp. It has a combined indicated and inferred resource of ~1.2 Mt. Grades for the indicated resource are 3.4% Cu, 0.4% Zn, 1.4 g/t Au and 9.2 g/t Ag. The bulk of the resource is located in three massive sulphide lenses (Upper, Middle and Lower) that are entirely within the Rusty Ridge Formation above the Lewis exhalite. The mineralization in all three ore lenses consists of massive pyrrhotite + chalcopyrite + magnetite. Semi-massive sphalerite is restricted to the upper and lower parts of the Middle lens. Massive magnetite occurs at the center of the Upper and Middle lenses, where it replaces massive pyrrhotite. A striking feature of West Ansil is the presence of abundant colloform and nodular pyrite (+marcasite) in the massive sulphides. Late-stage replacement of massive pyrrhotite by colloform pyrite and marcasite, occurs mostly along the upper and lower contacts of the lenses.
|
24 |
Mineralization and Alteration of the Late Triassic Glacier Creek Cu-Zn VMS Deposit, Palmer Project, Alexander Terrane, Southeast AlaskaSteeves, Nathan 14 January 2013 (has links)
The Glacier Creek volcanogenic massive sulfide (VMS) deposit is hosted within Late Triassic, oceanic back-arc or intra-arc, rift-related, bimodal volcanic rocks (Hyd or Tats Group) of the allochthonous Alexander terrane known as the Alexander Triassic Metallogenic Belt (ATMB). The deposit presently consists of four tabular massive sulfide lenses with a resource of 4.75 Mt. at 1.84% Cu, 4.57% Zn, 0.15% Pb, 0.28 g/t Au and 29.07 g/t Ag. A deposit-scale thrust fault offsets stratigraphy along the axial surface of a deposit-scale anticline.
The massive sulfide lenses are barite-rich and are divided into 6 main ore-types based on mineral assemblages. There is a large range of sphalerite compositions, with low-Fe sphalerite dominant throughout the lenses and high-Fe sphalerite at the top and bottom of the lenses in pyrrhotite-rich zones. Lenses contain anomalous Sb, Hg and Tl. Gangue minerals include barite, quartz, barian-muscovite, calcite, albite, highly subordinate chlorite and locally hyalophane and celsian. Overlying massive sulfide is a tuffaceous hydrothermal sediment with anomalous REE patterns and local hyalophane.
The general footwall to all four lenses is a thick unit of coherent to volcaniclastic feldspar-phyric basalt containing extensive lateral alteration. Four alteration facies are recognized based on mineral assemblages. Mass balance calculations for the footwall indicate general gains of S, Fe, Si and K with coincident loss of Ca, Na and Mg, along with trace element gains of Tl, Sb, Hg, Ba, Zn, Cu, As and loss of Sr with increased alteration intensity. Short wavelength infrared (SWIR) spectroscopy shows a general decrease in Na, K and Al content of muscovite and increase of Fe+Mg and Ba content towards ore.
Integrated petrographic, mineral, chemical and sulfur-isotope data suggest a transition during deposit formation, from high-temperature, acidic, reduced hydrothermal fluids mixing with oxidized, SO4-rich seawater, to later cooler, low fO2-fS2 conditions of formation and a lack of SO4 in seawater.
|
25 |
Ore Petrology and Alteration of the West Ansil Volcanic-hosted Massive Sulphide Deposit of the Noranda Mining Camp, Rouyn-Noranda, QuebecBoucher, Stéphanie 18 February 2011 (has links)
The West Ansil deposit was the first Cu discovery in 25 years in the Noranda Central Camp. It has a combined indicated and inferred resource of ~1.2 Mt. Grades for the indicated resource are 3.4% Cu, 0.4% Zn, 1.4 g/t Au and 9.2 g/t Ag. The bulk of the resource is located in three massive sulphide lenses (Upper, Middle and Lower) that are entirely within the Rusty Ridge Formation above the Lewis exhalite. The mineralization in all three ore lenses consists of massive pyrrhotite + chalcopyrite + magnetite. Semi-massive sphalerite is restricted to the upper and lower parts of the Middle lens. Massive magnetite occurs at the center of the Upper and Middle lenses, where it replaces massive pyrrhotite. A striking feature of West Ansil is the presence of abundant colloform and nodular pyrite (+marcasite) in the massive sulphides. Late-stage replacement of massive pyrrhotite by colloform pyrite and marcasite, occurs mostly along the upper and lower contacts of the lenses.
|
26 |
The J-shell command language interpreterTollefson, Bradley A. January 1985 (has links)
A command language interpreter (CLI) translates commands entered by the user into system actions. The shell is a specific type of CLI that was originally designed and used with UNIX operating systems.The author proposes to design and implement a shell-like CLI on top of the VMS operating system. The shell will enhance VMS features by providing an easier to use syntax and by providing features that are not currently available through VMS. These features include piping facilities and the ability to enter and/or reference multiple commands from a single command line. A language reference manual is provided with the J-shell. This manual explains the features and commands of the J-shell.
|
27 |
Ore Petrology and Alteration of the West Ansil Volcanic-hosted Massive Sulphide Deposit of the Noranda Mining Camp, Rouyn-Noranda, QuebecBoucher, Stéphanie 18 February 2011 (has links)
The West Ansil deposit was the first Cu discovery in 25 years in the Noranda Central Camp. It has a combined indicated and inferred resource of ~1.2 Mt. Grades for the indicated resource are 3.4% Cu, 0.4% Zn, 1.4 g/t Au and 9.2 g/t Ag. The bulk of the resource is located in three massive sulphide lenses (Upper, Middle and Lower) that are entirely within the Rusty Ridge Formation above the Lewis exhalite. The mineralization in all three ore lenses consists of massive pyrrhotite + chalcopyrite + magnetite. Semi-massive sphalerite is restricted to the upper and lower parts of the Middle lens. Massive magnetite occurs at the center of the Upper and Middle lenses, where it replaces massive pyrrhotite. A striking feature of West Ansil is the presence of abundant colloform and nodular pyrite (+marcasite) in the massive sulphides. Late-stage replacement of massive pyrrhotite by colloform pyrite and marcasite, occurs mostly along the upper and lower contacts of the lenses.
|
28 |
Mineralization and Alteration of the Late Triassic Glacier Creek Cu-Zn VMS Deposit, Palmer Project, Alexander Terrane, Southeast AlaskaSteeves, Nathan 14 January 2013 (has links)
The Glacier Creek volcanogenic massive sulfide (VMS) deposit is hosted within Late Triassic, oceanic back-arc or intra-arc, rift-related, bimodal volcanic rocks (Hyd or Tats Group) of the allochthonous Alexander terrane known as the Alexander Triassic Metallogenic Belt (ATMB). The deposit presently consists of four tabular massive sulfide lenses with a resource of 4.75 Mt. at 1.84% Cu, 4.57% Zn, 0.15% Pb, 0.28 g/t Au and 29.07 g/t Ag. A deposit-scale thrust fault offsets stratigraphy along the axial surface of a deposit-scale anticline.
The massive sulfide lenses are barite-rich and are divided into 6 main ore-types based on mineral assemblages. There is a large range of sphalerite compositions, with low-Fe sphalerite dominant throughout the lenses and high-Fe sphalerite at the top and bottom of the lenses in pyrrhotite-rich zones. Lenses contain anomalous Sb, Hg and Tl. Gangue minerals include barite, quartz, barian-muscovite, calcite, albite, highly subordinate chlorite and locally hyalophane and celsian. Overlying massive sulfide is a tuffaceous hydrothermal sediment with anomalous REE patterns and local hyalophane.
The general footwall to all four lenses is a thick unit of coherent to volcaniclastic feldspar-phyric basalt containing extensive lateral alteration. Four alteration facies are recognized based on mineral assemblages. Mass balance calculations for the footwall indicate general gains of S, Fe, Si and K with coincident loss of Ca, Na and Mg, along with trace element gains of Tl, Sb, Hg, Ba, Zn, Cu, As and loss of Sr with increased alteration intensity. Short wavelength infrared (SWIR) spectroscopy shows a general decrease in Na, K and Al content of muscovite and increase of Fe+Mg and Ba content towards ore.
Integrated petrographic, mineral, chemical and sulfur-isotope data suggest a transition during deposit formation, from high-temperature, acidic, reduced hydrothermal fluids mixing with oxidized, SO4-rich seawater, to later cooler, low fO2-fS2 conditions of formation and a lack of SO4 in seawater.
|
29 |
Geology of the Kidd Creek Deep Orebodies - Mine D, Western Abitibi Subprovince, CanadaGemmell, Thomas P. 13 September 2013 (has links)
The giant Kidd Creek Mine is an Archean Cu-Zn-Ag deposit in the Abitibi Greenstone belt, located in the Superior Province of Canada and is one of the largest known base metal massive sulfide mines in the world with a tonnage of 170.7 Mt (Past production, Resource and Reserve). The massive sulfides in Mine D comprise a number of ore lenses that are interpreted to be the downplunge continuation of the Central orebody from the upper mine. These are referred to as the West, Main, and South lenses. The massive sulfides overlie a silicified rhyolitic unit at the top of a mixed assemblage of rhyolite flows, volcaniclastic sediments and ultramafic flows. The sheared nature of the fragmental units in the hanging wall of the deposit, at depth, illustrates the greater deformation that has occurred than in the upper mine. Metal zonation and the distribution of Cu stringer mineralization suggest that the West and Main lenses may be part of a single massive sulfide body (Main orebody) that has been structurally dismembered. The South Lens is a detached body, separated by late faults. The large Cu stringer zone beneath the West and Main lenses has a thickness of up to 150 metres, and is much broader and structurally remobilized in Mine D partially due to a newly identified series of vertically trending offset faults, that extends along the entire length of the massive sulfide bodies. A number of features of the North, Central and South orebodies in the upper part of the mine (e.g., Se-rich halo around Cu-rich zones) have been recognized in Mine D and provide an important framework for correlating the deep orebodies with the upper levels of the mine. Drilling below the current mine levels indicates that the massive sulfide and Cu stringer zones continue below 10,200 feet (3109 m) and highlight the remarkable continuity of the deposit downplunge with no end in sight. Two main ore suites have been recognized in the upper part of the mine and in Mine D: a low-temperature, polymetallic assemblage of Zn, Ag, Pb, Cd, Sn, Sb, As, Hg, ±Tl, ±W, and a higher-temperature suite of Cu, Co, As, Bi, Se, In, ±Ni. More than 25 different ore minerals and ore-related gangue minerals are present, including Co-As-sulfides, Cu-Sn-sulfides, Ag-minerals, and selenides. The massive ores consist mainly of pyrite, pyrrhotite, sphalerite, magnetite and chalcopyrite, together with minor galena, tetrahedrite, arsenopyrite, and native silver with a quartz and siderite gangue. Despite the high Ag content of the ores, the majority of the massive sulfides are remarkably Au poor except for a local gold zone that has been recognized in the deep mine in association with high-temperature mineralization. The trace elements in the ores exhibit strong zonation and diverse mineralogy. Spectacular albite porphyroblasts, up to 1 cm in size occur in the most Cu-rich ores of Mine D which are coincident with the peak of regional metamorphism and likely represent higher metamorphic or hydrothermal temperatures. Overall the orebodies have remained remarkably similar downplunge. However, unlike the upper part of the mine, pyrrhotite is dominantly hexagonal, only tetrahedrite was observed as the dominant sulfosalt, and magnetite occurs as both blebby porphyroblasts and as abundant intergrowths with sphalerite-chalcopyrite ores and siderite. These characteristics suggest that the deep mine has been subjected to higher metamorphic temperatures, possibly related to depth of burial, and that the original hydrothermal fluids may of had a lower H2S/CO2 and/or higher temperatures.
|
30 |
Anordning för rengöring avkomponent i mjölkningsrobot : Framtagning av lösning för förbättrad rengöring avspentvättkopp för att motverka bakterietillväxt / Device for cleaning of component in milking robot : Design of solution for improved cleaning of teat cleaningcup to prevent bacterial growthLindbom, Erik January 2017 (has links)
This report describes how to make the VMS teat cleaning cup clean itself properly.The purpose is to create a sulotion that make sure the whole cup gets washedduring normal cleaning. The solution should be compatible with earlier versionsof the VMS and will be tested to see if the amount of bacteria decreases. / Denna rapport behandlar problemet med att en ny version av spentvättkopp på både dagens och framtida VMS (Volontary milking system) inte görs rent ordentligt. Syftet med projektet var att ta fram en lösning som låter hela spentvättkoppen göras rent när den inte används. Den färdiga versionen ska kunna testas ingående i en verklig miljo på olika generationer av VMS:er. Syftet med detär att kontrollera att lösningen klarar av långvarigt bruk och att göra en jämförelse för att se om mängden bakterier minskar. Ytterligare ett syfte var att göra prototypen lätt att montera utan att behöva modiera den existerande maskinen. Resultatet blev tre varianter på grund av olika designval på tidigare versioner.
|
Page generated in 0.0529 seconds