Spelling suggestions: "subject:"voice activity detection"" "subject:"joice activity detection""
11 |
Robustní detekce řečové aktivity / Robust Speech Activity DetectionPopková, Anna January 2019 (has links)
The aim of this work is to design and create a robust speech activity detector that is able to detect speech in different languages, in a noise environment and with music on background. I decided to solve this problem by using a neural network as a classification model that assigns one of the four possible classes - silence, speech, music, or noise to the input of audio recording. The resulting tool is able to detect the speech in at least 12 languages. Speech with musical background up to 88 % accuracy and system success on noisy data reaches from 84 % (5 dB SNR) to 88 % (20 dB SNR). This tool can be used for speech activity detection in various research areas of speech processing. The main contribution is the elimination of music, which when not eliminated, significantly increases the error rate of systems for speaker identification or speech recognition.
|
12 |
Detecção de atividade vocal utilizando recorrênciaPereira, Danilo Mendes Rodrigues January 2018 (has links)
Orientador: Prof. Dr. Filipe Ieda Fazanaro / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2018. / A detecção de atividade de voz é um problema importante em muitas aplicações de
fala/áudio, incluindo codificação e reconhecimento automático de fala; vários algoritmos
foram propostos na literatura explorando diferentes métricas de sinais (como a energia
do sinal). Neste trabalho, é apresentada uma metodologia alternativa para detecção
de atividade vocal (VAD) de um discurso ou sinal de áudio com base nas informações
fornecidas pelos gráficos de recorrência do sinal. O método proposto foi capaz de classificar
corretamente sinais limpos e com baixos níveis de ruído, apresentando desempenho próximo
ao algoritmo incluído no codec G.729, que é comumente usado em aplicativos de Voz sobre
IP (VoIP). / Voice activity detection is an important problem in many speech/audio applications,
including coding and automatic speech recognition; several algorithms have been proposed
in the literature to explore different signal metrics (such as signal energy). In this work, an
alternative methodology for the Voice Activity Detection (VAD) of a discourse or audio
signal is presented based on the information provided by the signals¿ recurrence plots.
The proposed method was able to correctly classify clean signals and with low levels of
noise, obtained performance similar to the algorithm included in the G.729 codec, which
is commonly used in VoIP applications.
|
13 |
Identifikace hudby, řeči, křiku, zpěvu v audio (video) záznamu / Music, Speech, Crying, Singing Detection in Audio (Video)Danko, Michal January 2016 (has links)
This thesis follows the trend of last decades in using neural networks in order to detect speech in noisy data. The text begins with basic knowledge about discussed topics, such as audio features, machine learning and neural networks. The network parameters are examined in order to provide the most suitable background for the experiments. The main focus of the experiments is to observe the influence of various sound events on the speech detection on a small, diverse database. Where the sound events correlated to the speech proved to be the most beneficial. In addition, the accuracy of the acoustic events, previously used only as a supplement to the speech, is also a part of experimentation. The experiment of examining the extending of the datasets by more fairly distributed data shows that it doesn't guarantee an improvement. And finally, the last experiment demonstrates that the network indeed succeeded in learning how to predict voice activity in both clean and noisy data.
|
14 |
Voice Activity Detection in the Tiger PlatformThorell, Hampus January 2006 (has links)
<p>Sectra Communications AB has developed a terminal for encrypted communication called the Tiger platform. During voice communication delays have sometimes been experienced resulting in conversational complications.</p><p>A solution to this problem, as was proposed by Sectra, would be to introduce voice activity detection, which means a separation of speech parts and non-speech parts of the input signal, to the Tiger platform. By only transferring the speech parts to the receiver, the bandwidth needed should be dramatically decreased. A lower bandwidth needed implies that the delays slowly should disappear. The problem is then to come up with a method that manages to distinguish the speech parts from the input signal. Fortunately a lot of theory on the subject has been done and numerous voice activity methods exist today.</p><p>In this thesis the theory of voice activity detection has been studied. A review of voice activity detectors that exist on the market today followed by an evaluation of some of these was performed in order to select a suitable candidate for the Tiger platform. This evaluation would later become the foundation for the selection of a voice activity detector for implementation.</p><p>Finally, the implementation of the chosen voice activity detector, including a comfort noise generator, was done on the platform. This implementation was based on the special requirements of the platform. Tests of the implementation in office environments show that possible delays are steadily being reduced during periods of speech inactivity, while the active speech quality is preserved.</p>
|
15 |
Voice Activity Detection in the Tiger PlatformThorell, Hampus January 2006 (has links)
Sectra Communications AB has developed a terminal for encrypted communication called the Tiger platform. During voice communication delays have sometimes been experienced resulting in conversational complications. A solution to this problem, as was proposed by Sectra, would be to introduce voice activity detection, which means a separation of speech parts and non-speech parts of the input signal, to the Tiger platform. By only transferring the speech parts to the receiver, the bandwidth needed should be dramatically decreased. A lower bandwidth needed implies that the delays slowly should disappear. The problem is then to come up with a method that manages to distinguish the speech parts from the input signal. Fortunately a lot of theory on the subject has been done and numerous voice activity methods exist today. In this thesis the theory of voice activity detection has been studied. A review of voice activity detectors that exist on the market today followed by an evaluation of some of these was performed in order to select a suitable candidate for the Tiger platform. This evaluation would later become the foundation for the selection of a voice activity detector for implementation. Finally, the implementation of the chosen voice activity detector, including a comfort noise generator, was done on the platform. This implementation was based on the special requirements of the platform. Tests of the implementation in office environments show that possible delays are steadily being reduced during periods of speech inactivity, while the active speech quality is preserved.
|
16 |
Audiovisual voice activity detection and localization of simultaneous speech sources / Detecção de atividade de voz e localização de fontes sonoras simultâneas utilizando informações audiovisuaisMinotto, Vicente Peruffo January 2013 (has links)
Em vista da tentência de se criarem intefaces entre humanos e máquinas que cada vez mais permitam meios simples de interação, é natural que sejam realizadas pesquisas em técnicas que procuram simular o meio mais convencional de comunicação que os humanos usam: a fala. No sistema auditivo humano, a voz é automaticamente processada pelo cérebro de modo efetivo e fácil, também comumente auxiliada por informações visuais, como movimentação labial e localizacão dos locutores. Este processamento realizado pelo cérebro inclui dois componentes importantes que a comunicação baseada em fala requere: Detecção de Atividade de Voz (Voice Activity Detection - VAD) e Localização de Fontes Sonoras (Sound Source Localization - SSL). Consequentemente, VAD e SSL também servem como ferramentas mandatórias de pré-processamento em aplicações de Interfaces Humano-Computador (Human Computer Interface - HCI), como no caso de reconhecimento automático de voz e identificação de locutor. Entretanto, VAD e SSL ainda são problemas desafiadores quando se lidando com cenários acústicos realísticos, particularmente na presença de ruído, reverberação e locutores simultâneos. Neste trabalho, são propostas abordagens para tratar tais problemas, para os casos de uma e múltiplas fontes sonoras, através do uso de informações audiovisuais, explorando-se variadas maneiras de se fundir as modalidades de áudio e vídeo. Este trabalho também emprega um arranjo de microfones para o processamento de som, o qual permite que as informações espaciais dos sinais acústicos sejam exploradas através do algoritmo estado-da-arte SRP (Steered Response Power). Por consequência adicional, uma eficiente implementação em GPU do SRP foi desenvolvida, possibilitando processamento em tempo real do algoritmo. Os experimentos realizados mostram uma acurácia média de 95% ao se efetuar VAD de até três locutores simultâneos, e um erro médio de 10cm ao se localizar tais locutores. / Given the tendency of creating interfaces between human and machines that increasingly allow simple ways of interaction, it is only natural that research effort is put into techniques that seek to simulate the most conventional mean of communication humans use: the speech. In the human auditory system, voice is automatically processed by the brain in an effortless and effective way, also commonly aided by visual cues, such as mouth movement and location of the speakers. This processing done by the brain includes two important components that speech-based communication require: Voice Activity Detection (VAD) and Sound Source Localization (SSL). Consequently, VAD and SSL also serve as mandatory preprocessing tools for high-end Human Computer Interface (HCI) applications in a computing environment, as the case of automatic speech recognition and speaker identification. However, VAD and SSL are still challenging problems when dealing with realistic acoustic scenarios, particularly in the presence of noise, reverberation and multiple simultaneous speakers. In this work we propose some approaches for tackling these problems using audiovisual information, both for the single source and the competing sources scenario, exploiting distinct ways of fusing the audio and video modalities. Our work also employs a microphone array for the audio processing, which allows the spatial information of the acoustic signals to be explored through the stateof- the art method Steered Response Power (SRP). As an additional consequence, a very fast GPU version of the SRP is developed, so that real-time processing is achieved. Our experiments show an average accuracy of 95% when performing VAD of up to three simultaneous speakers and an average error of 10cm when locating such speakers.
|
17 |
Audiovisual voice activity detection and localization of simultaneous speech sources / Detecção de atividade de voz e localização de fontes sonoras simultâneas utilizando informações audiovisuaisMinotto, Vicente Peruffo January 2013 (has links)
Em vista da tentência de se criarem intefaces entre humanos e máquinas que cada vez mais permitam meios simples de interação, é natural que sejam realizadas pesquisas em técnicas que procuram simular o meio mais convencional de comunicação que os humanos usam: a fala. No sistema auditivo humano, a voz é automaticamente processada pelo cérebro de modo efetivo e fácil, também comumente auxiliada por informações visuais, como movimentação labial e localizacão dos locutores. Este processamento realizado pelo cérebro inclui dois componentes importantes que a comunicação baseada em fala requere: Detecção de Atividade de Voz (Voice Activity Detection - VAD) e Localização de Fontes Sonoras (Sound Source Localization - SSL). Consequentemente, VAD e SSL também servem como ferramentas mandatórias de pré-processamento em aplicações de Interfaces Humano-Computador (Human Computer Interface - HCI), como no caso de reconhecimento automático de voz e identificação de locutor. Entretanto, VAD e SSL ainda são problemas desafiadores quando se lidando com cenários acústicos realísticos, particularmente na presença de ruído, reverberação e locutores simultâneos. Neste trabalho, são propostas abordagens para tratar tais problemas, para os casos de uma e múltiplas fontes sonoras, através do uso de informações audiovisuais, explorando-se variadas maneiras de se fundir as modalidades de áudio e vídeo. Este trabalho também emprega um arranjo de microfones para o processamento de som, o qual permite que as informações espaciais dos sinais acústicos sejam exploradas através do algoritmo estado-da-arte SRP (Steered Response Power). Por consequência adicional, uma eficiente implementação em GPU do SRP foi desenvolvida, possibilitando processamento em tempo real do algoritmo. Os experimentos realizados mostram uma acurácia média de 95% ao se efetuar VAD de até três locutores simultâneos, e um erro médio de 10cm ao se localizar tais locutores. / Given the tendency of creating interfaces between human and machines that increasingly allow simple ways of interaction, it is only natural that research effort is put into techniques that seek to simulate the most conventional mean of communication humans use: the speech. In the human auditory system, voice is automatically processed by the brain in an effortless and effective way, also commonly aided by visual cues, such as mouth movement and location of the speakers. This processing done by the brain includes two important components that speech-based communication require: Voice Activity Detection (VAD) and Sound Source Localization (SSL). Consequently, VAD and SSL also serve as mandatory preprocessing tools for high-end Human Computer Interface (HCI) applications in a computing environment, as the case of automatic speech recognition and speaker identification. However, VAD and SSL are still challenging problems when dealing with realistic acoustic scenarios, particularly in the presence of noise, reverberation and multiple simultaneous speakers. In this work we propose some approaches for tackling these problems using audiovisual information, both for the single source and the competing sources scenario, exploiting distinct ways of fusing the audio and video modalities. Our work also employs a microphone array for the audio processing, which allows the spatial information of the acoustic signals to be explored through the stateof- the art method Steered Response Power (SRP). As an additional consequence, a very fast GPU version of the SRP is developed, so that real-time processing is achieved. Our experiments show an average accuracy of 95% when performing VAD of up to three simultaneous speakers and an average error of 10cm when locating such speakers.
|
18 |
Audiovisual voice activity detection and localization of simultaneous speech sources / Detecção de atividade de voz e localização de fontes sonoras simultâneas utilizando informações audiovisuaisMinotto, Vicente Peruffo January 2013 (has links)
Em vista da tentência de se criarem intefaces entre humanos e máquinas que cada vez mais permitam meios simples de interação, é natural que sejam realizadas pesquisas em técnicas que procuram simular o meio mais convencional de comunicação que os humanos usam: a fala. No sistema auditivo humano, a voz é automaticamente processada pelo cérebro de modo efetivo e fácil, também comumente auxiliada por informações visuais, como movimentação labial e localizacão dos locutores. Este processamento realizado pelo cérebro inclui dois componentes importantes que a comunicação baseada em fala requere: Detecção de Atividade de Voz (Voice Activity Detection - VAD) e Localização de Fontes Sonoras (Sound Source Localization - SSL). Consequentemente, VAD e SSL também servem como ferramentas mandatórias de pré-processamento em aplicações de Interfaces Humano-Computador (Human Computer Interface - HCI), como no caso de reconhecimento automático de voz e identificação de locutor. Entretanto, VAD e SSL ainda são problemas desafiadores quando se lidando com cenários acústicos realísticos, particularmente na presença de ruído, reverberação e locutores simultâneos. Neste trabalho, são propostas abordagens para tratar tais problemas, para os casos de uma e múltiplas fontes sonoras, através do uso de informações audiovisuais, explorando-se variadas maneiras de se fundir as modalidades de áudio e vídeo. Este trabalho também emprega um arranjo de microfones para o processamento de som, o qual permite que as informações espaciais dos sinais acústicos sejam exploradas através do algoritmo estado-da-arte SRP (Steered Response Power). Por consequência adicional, uma eficiente implementação em GPU do SRP foi desenvolvida, possibilitando processamento em tempo real do algoritmo. Os experimentos realizados mostram uma acurácia média de 95% ao se efetuar VAD de até três locutores simultâneos, e um erro médio de 10cm ao se localizar tais locutores. / Given the tendency of creating interfaces between human and machines that increasingly allow simple ways of interaction, it is only natural that research effort is put into techniques that seek to simulate the most conventional mean of communication humans use: the speech. In the human auditory system, voice is automatically processed by the brain in an effortless and effective way, also commonly aided by visual cues, such as mouth movement and location of the speakers. This processing done by the brain includes two important components that speech-based communication require: Voice Activity Detection (VAD) and Sound Source Localization (SSL). Consequently, VAD and SSL also serve as mandatory preprocessing tools for high-end Human Computer Interface (HCI) applications in a computing environment, as the case of automatic speech recognition and speaker identification. However, VAD and SSL are still challenging problems when dealing with realistic acoustic scenarios, particularly in the presence of noise, reverberation and multiple simultaneous speakers. In this work we propose some approaches for tackling these problems using audiovisual information, both for the single source and the competing sources scenario, exploiting distinct ways of fusing the audio and video modalities. Our work also employs a microphone array for the audio processing, which allows the spatial information of the acoustic signals to be explored through the stateof- the art method Steered Response Power (SRP). As an additional consequence, a very fast GPU version of the SRP is developed, so that real-time processing is achieved. Our experiments show an average accuracy of 95% when performing VAD of up to three simultaneous speakers and an average error of 10cm when locating such speakers.
|
19 |
Kdy kdo mluví? / Speaker DiarizationTomášek, Pavel January 2011 (has links)
This work aims at a task of speaker diarization. The goal is to implement a system which is able to decide "who spoke when". Particular components of implementation are described. The main parts are feature extraction, voice activity detection, speaker segmentation and clustering and finally also postprocessing. This work also contains results of implemented system on test data including a description of evaluation. The test data comes from the NIST RT Evaluation 2005 - 2007 and the lowest error rate for this dataset is 18.52% DER. Results are compared with diarization system implemented by Marijn Huijbregts from The Netherlands, who worked on the same data in 2009 and reached 12.91% DER.
|
20 |
Voice Activity Detection / Voice Activity DetectionEnt, Petr January 2009 (has links)
Práce pojednává o využití support vector machines v detekci řečové aktivity. V první části jsou zkoumány různé druhy příznaků, jejich extrakce a zpracování a je nalezena jejich optimální kombinace, která podává nejlepší výsledky. Druhá část představuje samotný systém pro detekci řečové aktivity a ladění jeho parametrů. Nakonec jsou výsledky porovnány s dvěma dalšími systémy, založenými na odlišných principech. Pro testování a ladění byla použita ERT broadcast news databáze. Porovnání mezi systémy bylo pak provedeno na databázi z NIST06 Rich Test Evaluations.
|
Page generated in 0.085 seconds