• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismological study of volcanic activity at Papandayan volcano, West Java, Indonesia

Syahbana, Davy Kamil 18 October 2013 (has links)
Dans l'histoire des éruptions volcaniques, le Papandayan à l'Ouest de Java est considéré comme l'un des plus meurtriers après avoir causé la mort de 2957 personnes et des dégâts sérieux en 1772. L'éruption la plus récente de ce volcan a eu lieu en 2002 et était de type phréatique. Cette éruption a été précédée d'une augmentation soudaine de l'activité sismique moins de deux jours avant l'éruption. Aucune victime n'a été déplorée. La nature de cette éruption est indéfinie. Cette thèse regroupe plusieurs études utilisant différentes techniques en vue d'améliorer la prédictibilité des éruptions du volcan Papandayan, principalement via l'interprétation des signatures sismiques.<p>Le monitoring sismique passif a débuté en décembre 2009 par l'installation d'une station sismique permanente à large bande dans le cratère du Papandayan. L'année suivante, une station météorologique a été installée pour compléter les mesures. La troisième année, 8 stations sismiques temporaires ont été déployées autour du volcan en réponse à une augmentation de l'activité sismique en 2011.<p>Nous avons conduit différentes études; (1) Nous avons examiné l'évolution de l'activité volcanique par réalisation d'une revue complète de l'histoire éruptive du volcan, autant pour la période préhistorique qu'historique. (2) Nous avons réalisé une analyse temps-fréquence des événements sismiques, étudié leurs caractéristiques et proposé une nouvelle classification avec une description des processus physiques supposés les générer. (3) Nous avons étudié les signatures sismiques précurseur de l'éruption de 2002 et pendant la crise volcanique de 2011 en implémentant différentes méthodologies, dont: la détection automatique d'événements sismiques à l'aide de filtres récursifs STA/LTA, l'analyse spectrale des formes d'onde, la mesure continue de l'amplitude spectrale du signal (SSAM), la polarisation des ondes et l'analyse de la distribution fréquence/magnitude (b-value). Nous avons alors réalisé un modèle chronologique des séquences sismiques du Papandayan. (4) Pour améliorer la compréhension de la dynamique des fluides sous le volcan Papandayan, nous avons réalisé une analyse des fréquences complexes des événements longue période (LP) et leurs variations temporelles peuvent être utilisées pour estimer (a) la composition des fluides présents dans les fractures sous le volcan et/ou (b) l'évolution des dimensions de ces fractures. Ces variations des fréquences complexes des événements LP peuvent être interprétées comme les réponses dynamiques du système hydrothermal à des changements d'impulsions de chaleur transférées par les flux de gaz volcaniques du magma sous le volcan. (5) nous avons calculé l'évolution temporelle du rapport spectral horizontal-sur-vertical (HVSR) en utilisant le bruit sismique ambiant enregistré par une station unique pour estimer les variations de vitesse de propagation des ondes de cisaillement en lien avec l'activité dynamique du volcan. Nous avons trouvé une corrélation claire entre les variations de fréquence de résonnance HVSR et l'augmentation de la sismicité.<p>Enfin, nous proposons des hypothèses sur les processus physiques qui se produisent sous le Papandayan. Cette étude est une première tentative d'utilisation de cette méthode pour surveiller l'activité volcanique en continu.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

Bilan thermique et caractérisation géochimique de l'activité hydrothermale du volcan Rinjani, Lombok, Indonésie

Barbier, Benjamin 27 April 2010 (has links)
La caldera du volcan Rinjani contient un lac d’un volume de 1 km³ qui est probablement le plus grand lac volcanique au monde présentant une anomalie thermique nette. Ce lac présente une composition neutre chlorure sulfate bicarbonate inhabituelle pour les lacs volcaniques. Sa TDS (2600 mg/l) et conductivité (3500µs/cm) élevées indiquent un apport de fluides hydrothermaux très important. Enfin, son alcalinité élevée (520 mg/l), indique un apport important de dioxyde de carbone dans le lac.<p>Les sources thermales situées autour du Gunung Baru (cône volcanique situé dans la caldera) ont une composition chimique en éléments majeurs et une composition isotopique proche de celles du lac volcanique indiquant qu’elles sont essentiellement le résultat du recyclage du lac par le système hydrothermal. Les variations de compositions entre les différentes sources ont permis de montrer que leurs compositions est le résultat du mélange entre un fluide hydrothermal profond de composition neutre chlorure, dont la température a été estimée à 270°C, et d’un fluide plus superficiel riche en magnésium et en sulfate.<p>Le flux de dioxyde de carbone à la surface du lac a été estimé à l’aide de la méthode de la chambre d’accumulation et par calcul à environ 2300 t/j, ce qui représente un apport significatif de gaz. Cependant, comme le lac présente une structure polymictique, le risque d’accumulation de dioxyde de carbone en profondeur et donc d’éruption limnique peut être exclus.<p>Pour la première fois dans cette thèse, le modèle d’estimation des flux thermiques émis par les lacs volcaniques mis au point par Stevenson (1992) a été contraint par des mesures des paramètres météorologiques mesurés en continu, ce qui a permis de valider le modèle. De plus, nous avons pu montrer que l’essentiel des variations de températures des lacs volcaniques est dû à des variations météorologiques. En utilisant le flux thermique plutôt que la température, il est dès lors possible d’avoir accès à des variations de l’activité volcanique.<p>Le flux thermique estimé pour le lac du Rinjani est de 1700 MW, ce qui représente le flux le plus élevé jamais mesuré sur un lac volcanique aérien. Ce flux thermique est aussi plus élevé que le flux thermique mesuré sur des lacs de lave à 800°C. Ce paradoxe apparent s’explique par la plus grande dimension des lacs volcaniques, la capacité calorifique de l’eau quatre fois plus importante que celle du magma et la viscosité de l’eau 1 million de fois inférieure, ce qui fait de l’eau un excellent fluide caloporteur pour transporter les calories vers la surface.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
3

Multi-disciplinary continuous monitoring of Kawah Ijen volcano, East Java, Indonesia

Caudron, Corentin 13 September 2013 (has links)
Kawah Ijen (2386 m) is a stratovolcano located within Ijen Caldera, at the easternmost<p>part of Java island in Indonesia. Since 2010, the volcano has been equipped with seismometers<p>and several sensors (temperature and level) have been immersed in its acidic lake waters and in the acidic river seeping on the volcano flanks. While finding instruments capable of resisting to such extreme conditions (pH~0) has been challenging, the coupling of lake monitoring techniques with seismic data improves the knowledge of the volcanic-hydrothermal dynamics. Moreover, the monitoring capabilities have been considerably<p>enhanced supporting the decision-making of the authorities in case of emergency.<p><p>Several methods and processing techniques were used to analyze the seismic data. Much effort has been given to implement the seismic velocities (Moving Window Cross Spectral Analysis (MWCSA)) calculations. At Kawah Ijen, the frequency band that is less affected by the volcanic tremor and the seasonal fluctuations at the source ranges between 0.5-1.0 Hz. Moreover, a stack of 5 days for the current CCF gives reliable results with low errors and allows to detect fluctuations which are missed using a 10-day stack.<p><p>The background seismic activity mostly consists in low frequency events and a continuous tremor of low amplitude. Fluctuations of the lake temperature and level result from the recharge of the hydrothermal system during the rainy season. Kawah Ijen lake waters are not perfectly mixed and a shallow stratification occurs during the rainy season, because meteoric waters are less dense than the lake fluids.<p><p>Different unrest occurred during our study. Some of them strongly affected the volcanic lake, while others did only weakly. In the first category, a strong unrest commenced in October 2011 with heightened VT (Volcano Tectonic) earthquakes and low frequency events activity, which culminated mid-December 2011. This unrest was correlated with an enhanced heat and hydrothermal fluids discharge to the crater and significant variations of the relative velocities (~1%). This suggests an important build-up of stress into the system. VT earthquakes opened pathways for the fluids to ascend, by increasing the permeability of the system, which latter allowed the initiation of monochromatic tremor (MT) when the steam/gases interacted with the shallow portions of the aquifer. Our calculations evidence a higher contribution of steam in March 2012 that might explain the increase of the MT frequency when bubbles were observed at the lake surface. This period was also characterized by short-lived but strong velocity variations, related to water level<p>rises containing important amount of bubbles, and important heat and mass discharges<p>into the lake. On the contrary, the second category of unrest did only slightly affect the<p>lake system. This could be explained by a dryer hydrothermal system and/or locations of<p>the seismic sources, which were not directly linked to the lake.<p><p>While a magmatic eruption will likely be preceded by a strong seismic activity, the major challenges remain to understand why the unrest we studied did not lead to an eruption and to identify precursory signs of a phreatic eruption. Even a small phreatic eruption would be devastating for the people working everyday in the crater and the ones<p>who live nearby the voluminous acidic lake. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
4

Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique

Mazot, Agnès 20 December 2005 (has links)
Surface manifestations of hydrothermal fluids such as fumaroles and hot springs provide valuable information about the level of activity of a volcano during quiescent period. Geochemical study of gas and spring waters is useful to elaborate geochemical model for magmatic-hydrothermal system. Furthermore, temporal geochemical monitoring of these fluids with time provides a better understanding in processes occurring inside the volcano and can be useful to detect any changes in the activity of the magmatic-hydrothermal system. This thesis investigates two hydrothermal systems at Kelud and Papandayan volcanoes that are located at Java Island in Indonesia. Kelud is considered as one of the most dangerous volcanoes of Java because of its frequent eruptions. After the last eruption that occurred in 1990, a new lake rapidly filled the crater of Kelud volcano. Water samples collected since 1993 are near neutral Na-K chloride fluids and are typical of aged hydrothermal system where the acidity has been completely neutralized by fluid-rock interaction and where the emission of acid magmatic gases has stopped. Two sudden increases in lake temperature in 1996 and 2001 were accompanied by rapid changes in lake water compositions and suggest the existence of two hydrothermal systems feeding the lake: a shallow hydrothermal system dominated by Ca-Mg sulfate waters and a deepest aquifer with neutral alkali chloride waters. From 2001 to 2005, measurements of CO2 emitted by the surface of the lake were performed by using the accumulation chamber method modified in order to work at the surface of a crater lake. Two statistical methods were used to process data: the graphical statistical and stochastic simulation methods. The results of graphical statistical approach showed that two different degassing processes are acting at the lake surface: one corresponding to CO2 fluxes resulting from rising bubbles and the other corresponding to equilibrium diffusion of dissolved CO2 at the water-air surface. Total CO2 emission rate estimated by stochastic simulation ranges from 105 t/day for 2001 to 32 t/day for 2005. Thermal energy released by the lake was also estimated by using an energy balance model with a new constraint using the CO2 flux. The thermal flux decreased from 200 MW (2001) to 100 MW (2002) and then remained stable. Correlation between the chemical data of waters, the fluxes of CO2 and energy show that a constant decrease in the level of activity of the volcano since 1993 occurred although the lake temperature has been stable since 2003. Since the last magmatic eruption that occurred in 1772, phreatic eruptions occur on Papandayan volcano with the last one in 2002. The volcanic material ejected during this eruption is essentially made of altered rocks from within the hydrothermal system. The interaction of acid waters with the host rocks corresponds to an advanced argilic alteration. The chemical compositions of waters from Papandayan volcano and Kelud lake waters are contrasting. Indeed, the spring waters sampled since 1994 are acid sulfate-chloride waters and acid sulfate waters. The chemical and isotopic analyses of gases and waters suggest a significant magmatic contribution in SO2, HCl and HF to the hydrothermal system. The chemical composition of waters sampled after the 2002 eruption have provided information about origin of this eruption. Decrease in chloride concentration and in delta 34S of dissolved sulfates showed that the magmatic contribution in these fluids are less important and that the waters are likely to be formed by the condensation of steam (H2O, H2S) rising from a boiling aquifer.<p><p> / Doctorat en sciences, Spécialisation géologie / info:eu-repo/semantics/nonPublished

Page generated in 0.0467 seconds