• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Supervisory control scheme for FACTS and HVDC based damping of inter-area power oscillations in hybrid AC-DC power systems

Hadjikypris, Melios January 2016 (has links)
Modern interconnected power systems are becoming highly complex and sophisticated, while increasing energy penetrations through congested inter-tie lines causing the operating point approaching stability margins. This as a result, exposes the overall system to potential low frequency power oscillation phenomena following disturbances. This in turn can lead to cascading events and blackouts. Recent approaches to counteract this phenomenon are based on utilization of wide area monitoring systems (WAMS) and power electronics based devices, such as flexible AC transmission systems (FACTS) and HVDC links for advanced power oscillation damping provision. The rise of hybrid AC-DC power systems is therefore sought as a viable solution in overcoming this challenge and securing wide-area stability. If multiple FACTS devices and HVDC links are integrated in a scheme with no supervising control actions considered amongst them, the overall system response might not be optimal. Each device might attempt to individually damp power oscillations ignoring the control status of the rest. This introduces an increasing chance of destabilizing interactions taking place between them, leading to under-utilized performance, increased costs and system wide-area stability deterioration. This research investigates the development of a novel supervisory control scheme that optimally coordinates a parallel operation of multiple FACTS devices and an HVDC link distributed across a power system. The control system is based on Linear Quadratic Gaussian (LQG) modern optimal control theory. The proposed new control scheme provides coordinating control signals to WAMS based FACTS devices and HVDC link, to optimally and coherently counteract inter-area modes of low frequency power oscillations inherent in the system. The thesis makes a thorough review of the existing and well-established improved stability practises a power system benefits from through the implementation of a single FACTS device or HVDC link, and compares the case –and hence raises the issue–when all active components are integrated simultaneously and uncoordinatedly. System identification approaches are also in the core of this research, serving as means of reaching a linear state space model representative of the non-linear power system, which is a pre-requisite for LQG control design methodology.
12

Performance Evaluation Of Distance Relays For FACTS Compensated Transmission Lines

Maturu, Suresh 03 1900 (has links) (PDF)
With limited enhancement or expansion of the transmission infrastructure, the contemporary power systems are operating under more stressed conditions. It becomes important to fully utilize the existing transmission system to supply load demand as much as possible, thus eliminating or reducing the need for new transmission investment. Flexible AC Transmission System (FACTS) technology provides an alternative to fully utilize the existing transmission lines as well as new and upgraded lines, by controlling power and also enhancing the power transfer capability of transmission lines. However, the implementation of FACTS controllers in the transmission system has introduced new power system dynamics that must be addressed in the area of power system protection, such as rapid changes in line impedance, power angle, line currents, transients introduced by the occurrence of fault and associated control action of the FACTS controller. Therefore, the performance of the protection system must be carefully analyzed in the presence of FACTS controllers. The thesis aims at evaluating the performance of distance relays when different types of FACTS controllers, in particular Voltage Source Converter (VSC) based FACTS controllers, are incorporated at the midpoint of the transmission system to achieve voltage profile improvement and power transfer capability. The detailed models of these controllers and their control strategies are described. The presence of FACTS controllers in the loop affects both steady state and transient components of voltage and current signals. The rapid response of FACTS controllers to different power system configurations significantly affects the apparent impedance seen by distance relays. The apparent impedance seen by distance relays would be different from that of the system without FACTS controller. Due to this, the distance relay may malfunction, resulting in unreliable operation of the power system during faults. Furthermore, the effect of FACTS controllers on distance relay operation depends on the type of FACTS controller used, the application for which it has been installed and its location in the power system. The distance relay is evaluated for different loading conditions and for various fault conditions. Simulation studies are carried out using PSCAD/EMTDC based transient simulation package.
13

Lillgrund Wind Farm Modelling and Reactive Power Control

Boulanger, Isabelle January 2009 (has links)
The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources. Before the accomplishment of a wind power project many pre-studies are required in order to verify the possibility of integrating a wind power plant in the electrical network. The creation of models in different software and their simulation can bring the insurance of a secure operation that meets the numerous requirements imposed by the electrical system. Hence, this Master thesis work consists in the creation of a wind turbine model. This model represents the turbines installed at Lillgrund wind farm, the biggest wind power plant in Sweden. The objectives of this project are to first develop an accurate model of the wind turbines installed at Lillgrund wind farm and further to use it in different kinds of simulations. Those simulations test the wind turbine operating according to different control modes. Also, a power quality analysis is carried out studying in particular two power quality phenomena, namely, the response to voltage sags and the harmonic distortion. The model is created in the software PSCAD that enables the dynamic and static simulations of electromagnetic and electromechanical systems. The model of the wind turbine contains the electrical machine, the power electronics (converters), and the controls of the wind turbine. Especially, three different control modes, e.g., voltage control, reactive power control and power factor control, are implemented, tested and compared. The model is tested according to different cases of voltage sag and the study verifies the fault-ride through capability of the turbine. Moreover, a harmonics analysis is done. Eventually the work concludes about two power quality parameters.
14

Analysis Of SubSynchronous Resonance With Voltage Source Converter Based FACTS And HVDC Controllers

Nagesh Prabhu, * 09 1900 (has links) (PDF)
No description available.

Page generated in 0.0834 seconds