• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Vroman effect: a molecular level description of fibrinogen displacement

Jung, Seung-Yong 17 February 2005 (has links)
Investigations of specific and nonspecific interactions of biomolecules at liquid/solid interfaces are presented. To investigate specific multivalent ligand-receptor interactions, bivalent antibodies and haptens bound to solid supported membrane were used as models for ligand-receptor coupling. Novel microfabrication strategies, which included spatially addressed bilayer arrays and heterogeneous microfluidic assays, in conjunction with total internal reflection microscopy, was employed to achieve this goal. These high throughput techniques allow thermodynamic data of binding interactions to be acquired with only a few microliters of analyte and superior signal to noise. The results yield both the first and second dissociation constant for bivalent IgG antibodies with membrane bound hapten molecules. Studies were conducted both as a function of hapten density and cholesterol content in the membrane. Another research area of this dissertation is the molecular level description of nonspecific adsorption and displacement of the model protein, fibrinogen, onto hydrophilic surfaces. Techniques such as atomic force microscopy, immunochemical assays, fluorescence microscopy, and vibrational sum frequency spectroscopy were employed to probe this system. The results demonstrate that the protein's αC domains play the critical role. When fibrinogen is adsorbed to a hydrophilic surface via these moieties, its displacement rate in the presence of human plasma is approximately 170 times faster than when these domains are not in direct surface contact. Even more significantly, spectroscopic studies show evidence for highly aligned Arg and Lys residues interacting with the negatively charged substrate only when the αC domains make direct surface contact. The interfacial ordering of these residues appears to be the hallmark of a weak and labile electrostatic attraction between the substrate and the adsorbed macromolecule.
2

Surface Plasmon Resonance (SPR) Bio-Sensors to Detect Target Molecules in Undiluted Human Serum

January 2015 (has links)
abstract: Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute changes of refractive index occurring adjacent to a metal film, offering detection limits up to a few ppt (pg/mL). Through SPR, the process of protein adsorption may be monitored in real-time, and transduced into an SPR angle shift. This unique technique bypasses the time-consuming, labor-intensive labeling processes, such as radioisotope and fluorescence labeling. More importantly, the method avoids the modification of the biomarker’s characteristics and behaviors by labeling that often occurs in traditional biosensors. While many transducers, including SPR, offer high sensitivity, selectivity is determined by the bio-receptors. In traditional biosensors, the selectivity is provided by bio-receptors possessing highly specific binding affinity to capture target analytes, yet their use in biosensors are often limited by their relatively-weak binding affinity with analyte, non-specific adsorption, need for optimization conditions, low reproducibility, and difficulties integrating onto the surface of transducers. In order to circumvent the use of bio-receptors, the competitive adsorption of proteins, termed the Vroman effect, is utilized in this work. The Vroman effect was first reported by Vroman and Adams in 1969. The competitive adsorption targeted here occurs among different proteins competing to adsorb to a surface, when more than one type of protein is present. When lower-affinity proteins are adsorbed on the surface first, they can be displaced by higher-affinity proteins arriving at the surface at a later point in time. Moreover, only low-affinity proteins can be displaced by high-affinity proteins, typically possessing higher molecular weight, yet the reverse sequence does not occur. The SPR biosensor based on competitive adsorption is successfully demonstrated to detect fibrinogen and thyroglobulin (Tg) in undiluted human serum and copper ions in drinking water through the denatured albumin. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
3

Metal release from stainless steel and CoCrMo alloys in protein-rich environments – effects of protein aggregation, friction, and irradiation

Wei, Zheng January 2020 (has links)
Highly corrosion-resistant alloys are used in sensitive environments such as the human body and food environments. However, even tiny amounts of released metals from these surfaces could potentially cause adverse effects. It is hence important to study the biointerface between corrosion-resistant alloys and protein-rich environments. This licentiate thesis focused on the metal release processes for stainless steels and cobalt-chromium-molybdenum (CoCrMo) alloys in different protein-rich environments. It aimed at investigating the effect of protein displacement (Vroman effect), gamma irradiation, and friction on the metal release processes. Trace metal analysis was the main tool, combined with other solution analytical tools, electrochemical methods, and surface sensitive techniques. The effect of gamma irradiation, of relevance for cancer radiotherapy, on metal release from CoCrMo and stainless steel 316L was investigated in Paper I. The effect was minor, however the released amount of metals increased after irradiation causing an enhanced surface passivation effect. Whether the displacement of surface proteins (Vroman effect) was playing a role on the metal release and corrosion processes of stainless steels 316L and 303, and of CoCrMo, was investigated in Papers II and III. A Vroman effect influencing the metal release could be observed for stainless steel 316L, but not for CoCrMo and stainless steel grade 303. However, the displacement of the smaller protein bovine serum albumin (BSA) from the surface by the larger protein fibrinogen (Fbn) was observed for both stainless steel grades. The Vroman effect also caused a higher corrosion susceptibility of stainless steel 303, probably due to a thicker layer or patches of adsorbed Fbn. Most probably, protein aggregation and precipitation caused an underestimation of the extent of metal release, especially in the case of CoCrMo. Protein aggregation and precipitation were significantly observed in all studies, especially for solutions with high protein concentrations (Papers II-IV). The effect of friction, by using different setups (stirring with physical contact and sliding in a pin-on-disk machine), on metal release from stainless steel 316L and CoCrMo was investigated in Papers II and IV. Friction induced an increased extent of metal release, increased protein aggregation and precipitation, and enhanced metal precipitation. A combined friction and complexation effect was observed for stainless steel 316L, resulting in an etching effect and relatively high amounts of released metals. Due to enhanced precipitation effects and the experimental setup, it is recommended to strongly consider protein aggregation and metal precipitation events in systems where this could be expected and where friction is present. Otherwise, there is a risk to strongly underestimate the extent of metal release in these protein-rich environments. / <p>QC 2020-09-28</p>
4

Étude des interactions entre les nanoparticules et les matrices biologiques par microscopie différentielle dynamique

Latreille, Pierre-Luc 08 1900 (has links)
Nanomedicine is based primarily on the concept of drug formulation through nanotechnology. The main idea is based on the encapsulation of an active ingredient by a nanoparticle (NP) to allow it to accumulate in tumors, to penetrate a biological barrier or to target a biological component. However, the performance of these formulations is disappointing, and, in recent years, it has been noticed that their effectiveness has not improved in the last decade. Some recent hypotheses highlight our lack of knowledge about the interactions of nanotechnologies with living organism and more particularly the lack of techniques to quantify these interactions. We therefore explore in this thesis the development and adaptation of a new microscopy technique, dynamic differential microscopy (DDM), to study the interactions of nanotechnologies with biological matrices. Two subjects are discussed, the first on the interactions of NPs with the proteins of biological fluids and, the second one, on the capacity of NPs to diffuse in interstitial tissues. First, we reviewed quantification techniques that were allowing the measurement of protein adsorption at the surface of NPs. We then identified fundamental questions of this adsorption, namely, if it was generally structured in monolayers or in multilayers and if it was reversible or irreversible. A meta-analysis, based on these questions, could therefore guide the development of the DDM technique to measure protein adsorption and therefore answer these questions. The methodology proposed for the quantification of protein adsorption is based on the measurement of the fluorescence signal which comes from fluorescently tagged proteins adsorbed on non-fluorescent NPs. This methodology was successfully applied for the quantification of the adsorption of lysozyme, albumin and serum proteins. The technique demonstrated that all the proteins studied adsorbed in monolayers and that their adsorption was reversible. An atypical adsorption mechanism which was also hypothesized in our meta-analysis was evidenced by DDM as well. Next, we applied DDM to study the diffusion of NPs in extracellular matrices. The contribution of deformability has been a parameter studied in terms of its relation to improve their diffusion within these confined environments. The diffusion of "soft" NPs was compared to that of "hard" NPs in an agarose gel, mimicking the extracellular matrix. Soft NPs have been observed to diffuse up to 100 times faster than hard NPs of the same size. Evaluation of the hydrodynamic and electrostatic contributions determined that the soft NPs shrinks in the gel, boosting their diffusion in comparison to hard NPs. In summary, this work highlights the important contribution of analytical techniques to the field of nanotechnologies applied to pharmacy and to our understanding of their interactions with living organisms. It is clear that the contribution of these techniques to our detailed understanding of nanomedicine properties has a direct relation with their clinical translation potential. / La nanomédecine repose essentiellement sur le développement de nouvelles formulations pour délivrer les médicaments à partir de nanotechnologies. L’idée principale est que l’encapsulation d’un principe actif par une nanoparticule (NP) pourrait lui permettre de s’accumuler dans des tumeurs, de pénétrer une barrière biologique ou bien pour cibler une composante biologique. Or, les performances de ces « nano-formulations » sont décevantes et, depuis quelques années, il a été remarqué que leur efficacité ne semble pas avoir évoluée dans le temps. De récentes hypothèses mettent de l’avant notre manque de connaissances vis-à-vis les interactions des nanotechnologies avec les éléments du vivant, et plus particulièrement, le manque de techniques robustes permettant de quantifier ces interactions. Nous proposons donc dans cette thèse le développement et l’adaptation d’une nouvelle technique de microscopie, la microscopie différentielle dynamique (DDM), pour étudier les interactions entre les nanotechnologies et les matrices biologiques. Deux thématiques seront abordées, la première, les interactions des NPs avec les protéines des fluides biologiques et, la seconde, la capacité des NPs à diffuser dans des tissus interstitiels. D’abord, nous avons revus les techniques de quantification permettant la mesure de l’adsorption de protéines à la surface des NPs. Nous avons ensuite identifié les questions fondamentales en lien avec cette adsorption. Deux phénomènes sont largement débattus dans la littérature, il s’agit de la formation de multicouches et de la réversibilité de l’adsorption. Une méta-analyse a donc permis d’orienter le développement de la technique par DDM pour mesurer l’adsorption de protéines, dans le but de répondre à ces interrogations. La méthodologie proposée pour la quantification de l’adsorption de protéines à la surface des NPs repose sur la mesure du signal de fluorescence de protéines fluorescentes adsorbées à la surface des NPs non fluorescentes. Cette méthodologie a été appliqué avec succès pour la quantification de l’adsorption des protéines du sérum, du lysozyme et de l’albumine. La technique a d’ailleurs permis de montrer que toutes les protéines étudiées s’adsorbaient en monocouches et que leur adsorption était réversible. Un mécanisme d’adsorption atypique a été mis en évidence dans le cadre de nos expériences et un parallèle a pu être fait avec certaines hypothèses émises avec notre méta-analyse. Ensuite, nous avons appliqué la DDM pour l’étude de la diffusion des NPs dans des matrices extracellulaires. La déformabilité des NPs a été étudiée afin de définir plus précisément sa contribution dans la diffusion à l’intérieur de milieux confinés. La diffusion des NPs « molles » a été comparée à celle des NPs « dures » dans un gel d’agarose, mimant la matrice extracellulaire. Les NPs molles ont été en mesure de diffuser jusqu’à 100 fois plus rapidement que les NPs dures de même taille. L’évaluation des contributions hydrodynamiques et électrostatiques a permis de déterminer que la taille des NPs molles, réduisant dans le gel, leur accordant un avantage diffusif par rapport aux NPs dures. En sommes, ces travaux ont permis de mettre en évidence l’importance des techniques analytiques pour l’étude des nanotechnologies appliquées à la médecine et pour affiner notre compréhension de leurs interactions avec le vivant. Il est clair que la contribution de ces techniques à l’avancement de nos connaissances théoriques relatives aux nanotechnologies aura un impact direct sur leurs chances d’effectuer une transition vers la clinique.

Page generated in 0.0535 seconds