• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 57
  • 25
  • 18
  • 12
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 369
  • 123
  • 79
  • 59
  • 58
  • 48
  • 46
  • 41
  • 38
  • 37
  • 35
  • 34
  • 33
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Analysis and Applications of Microstructure and Holey Optical Fibers

Kim, Jeong I. 27 October 2003 (has links)
Microstructure and photonic crystal fibers with periodic as well as random refractive-index distributions are investigated. Two cases corresponding to fibers with one-dimensional (1D) radial index distributions and two-dimensional (2D) transverse index distributions are considered. For 1D geometries with an arbitrary number of cladding layers, exact analytical solutions of guided modes are obtained using a matrix approach. In this part, for random index distributions, the average transmission properties are calculated and the influence of glass/air ratio on these properties is assessed. Important transmission properties of the fundamental mode, including normalized propagation constant, chromatic dispersion, field distributions, and effective area, are evaluated. For 2D geometries, the numerical techniques, FDTD (Finite-Difference Time-Domain) method and FDM (Finite Difference Method), are utilized. First, structures with periodic index distributions are examined. The investigation is then extended to microstructure optical fibers with random index distributions. Design of 2D microstructure fibers with random air-hole distributions is undertaken with the aim of achieving single-mode guiding property and small effective area. The former is a unique feature of the holey fiber with periodic air-hole arrangement and the latter is a suitable property for nonlinear fiber devices. Measurements of holey fibers with random air-hole distributions constitute an important experimental task of this research. Using a section of a holey fiber fabricated in the draw tower facility at Virginia Tech, measurements of transmission spectra and fiber attenuation are performed. Also, test results for far-field pattern measurements are presented. Another objective of this dissertation is to explore new applications for holey fibers with random or periodic hole distributions. In the course of measuring the holey fibers, it was noticed that robust temperature-insensitive pressure sensors can be made with these fibers. This offers an opportunity for new low-cost and reliable pressure fiber-optic sensors. Incorporating gratings into holey fibers in conjunction with the possibility of dynamic tuning offers desirable characteristics with potential applications in communications and sensing. Injecting gases or liquids in holey fibers with gratings changes their transmission characteristics. These changes may be exploited in designing tunable optical filters for communication applications or making gas/liquid sensor devices. / Ph. D.
112

Tapered Splice for Efficient Power Coupling to Small-Core Nonlinear Fibers

Arabasi, Sameer 11 August 2008 (has links)
There is continued interest in nonlinear devices for different types of optical signal processing, such as Raman or parametric amplifiers. The small nonlinearity of conventional single-mode fibers sets a major limitation for these devices. A large nonlinearity can be achieved by having a large nonlinear coefficient, a small effective area, or both. Having a small effective area, however, requires efficient coupling to very small core fibers. A novel technique for splicing conventional single-mode fibers to small core fibers is proposed and demonstrated. The coupling efficiency obtained by this technique is considerably improved over that obtained by the butt-joint splice. This technique uses a highly tapered splice in which the field leaves the core and propagates as a fundamental cladding mode before it couples back to the core mode of the small core fiber. At the beginning of the taper the fundamental core mode carries most of the power. Over the down-taper region, the core mode couples to the fundamental cladding mode for which the cladding-air interface plays a major role in guiding the light. Over the up-taper region, the cladding mode is coupled back to the core mode. Fabrication of such a device involves many constraints. Alignment of the cores, the slope of the taper, and the taper length are important issues to ensure that excessive radiation loss does not take place. The theory of tapered single-mode fiber is discussed including adiabaticity criteria, length considerations, mode coupling and wavelength dependence. We use a computational simulation to examine how the field changes from one part of the taper to the other. Variations of the fiber and the field properties along the taper are studied. In this simulation, the tapered region is approximated as a sufficiently large number of cascaded uniform fiber segments of decreasing or increasing diameters. Another analysis based on the conservation of power flow is also provided. Tapered splices were fabricated using two different experimental setups. The experimental setup to verify our theoretical results is shown. The tapering process is thoroughly discussed. The spectrum of a tunable laser passing through a splice shows how modes interact with each other during the tapering process. We successfully fabricated very low loss tapers with extremely small diameters. Tapered splices showed a lower loss than their butt-joint counterparts. Experimental measurements of these tapered splices are presented and discussed. / Ph. D.
113

Estudio teórico y experimental de la guía dieléctrica en banda invertida

Prieto Gala, Andrés 01 October 1979 (has links)
Se discute la guía dieléctrica en banda invertida como modificación capaz de aumentar el factor de calidad de la guía dieléctrica rectangular. En su configuración abierta se emplea para su estudio el método de la constante dieléctrica efectiva; se optimiza la geometría para conseguir el mayor ancho de banda posible y se discute la posibilidad de naturaleza espuerea para una parte de los modos encontrados. Se comprueba que el sistema de excitación clásico para guías dieléctricas no resulta valido para la guía en banda invertida y se optimiza un sistema de tipo cornete. Mediante un sistema de sonda móvil se mide la constante de propagación en la guía obteniéndose un buen acuerdo con las predicciones teóricas. Se estudia la guía dieléctrica cerrada en una caja mediante el método de Schelkunoff comprobándose la existencia de modos EH. / The inverted band dielectric waveguide is proposed as an alternative to the classical open dielectric waveguide, providing a higher quality factor. The dielectric effective constant method is used to study the open waveguide. In order to get the highest bandwith, the geometry is optimised, finding not real modes in the waveguide. It has been necessary to use a new excitation method of waveguide using a horn as transition. The measurement of the propagation constant has been made by means of an electric probe. The agreement with the theoretical predictions is very good. Finally the closed guide is studied by the Schelkunoff's method: modes EH were observed.
114

The Analysis, Simulations, and Applications of the Structure of the Nonlinear Waveguide

Lin, Jyh-Shiuan 10 July 2002 (has links)
In this paper, we used the beam propagation method to analyze the characteristics of nonlinear optical waveguides. Refractive indexes of media in planar optical waveguides are changed with the electric field intensity called nonlinear planar optical waveguides. We use the modal theory to solve the three-layer planar optical waveguide with the guiding film is nonlinear. We not only obtained dispersion relation curves, but also observed the affections of the input power to field distributions. By the basic theory of this, we proposed a novel method to analyze multi-layer planar optical waveguides with nonlinear or localized nonlinear guiding films.By the theory and novel method we pointed out, on the other hand, we proposed an all-optical switch and analyze the all-optical device by the beam propagation method.
115

A Novel Approach to Label-Free Biosensors Based on Photonic Bandgap Structures

García Castelló, Javier 07 February 2014 (has links)
The necessity of using extremely high sensitivity biosensors in certain research areas has remarkably increased during the last two decades. Optical structures, where light is used to transduce biochemical interactions into optical signals, are a very interesting approach for the development of this type of biosensors. Within optical sensors, photonic integrated architectures are probably the most promising platform to develop novel lab-on-a-chip devices. Such planar structures exhibit an extremely high sensitivity, a significantly reduced footprint and a high multiplexing potential for sensing applications. Furthermore, their compatibility with CMOS processes and materials, such as silicon, opens the route to mass production, thus reducing drastically the cost of the final devices. Optical sensors achieve their specificity and label-free operation by means of a proper chemical functionalization of their surfaces. The selective attachment of the receptors allows the detection of the target analytes within a complex matrix. This PhD Thesis is focused on the development of label-free photonic integrated sensors in which the detection is based on the interaction of the target analytes with the evanescent field that travels along the structures. Herein, we studied several photonic structures for sensing purposes, such as photonic crystals and ring resonators. Photonic crystals, where their periodicity provokes the appearance of multiple back and forth reflections, exhibits the so-called slow-light phenomenon that allows an increase of the interaction between the light and the target matter. On the other hand, the circulating nature of the resonant modes in a ring resonator offers a multiple interaction with the matter near the structure, providing a longer effective length. We have also proposed a novel approach for the interrogation of photonic bandgap sensing structures where simply the output power needs to measured, contrary to current approaches based on the spectral interrogation of the photonic structures. This novel technique consists on measuring the overlap between a broadband source and the band edge from a SOI-based corrugated waveguide, so that we can determine indirectly its spectral position in real-time. Since there is no need to employ tunable equipment, we obtain a lighter, simpler and a cost-effective platform, as well as a real-time observation of the molecular interactions. The experimental demonstration with antibody detection measurements has shown the potential of this technique for sensing purposes / García Castelló, J. (2014). A Novel Approach to Label-Free Biosensors Based on Photonic Bandgap Structures [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35398 / TESIS
116

Fabrication of Hollow Optical Waveguides on Planar Substrates

Barber, John P. 16 October 2006 (has links) (PDF)
This dissertation presents the fabrication of hollow optical waveguides integrated on planar substrates. Similar in principle to Bragg waveguides and other photonic crystal waveguides, the antiresonant reflecting optical waveguide (ARROW) is used to guide light in hollow cores filled with liquids or gases. Waveguides with liquid or gas cores are an important new building block for integrated optical sensors. The fabrication method developed for hollow ARROW waveguides makes use of standard microfabrication processes and materials. Dielectric layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) to form the bottom layers of the ARROW waveguide. A sacrificial core material is then deposited and patterned. Core materials used include aluminum, SU-8 and reflowed photoresist, each resulting in a different core geometry. Additional dielectric layers are then deposited, forming the top and sides of the waveguide. The sacrificial core is then removed in an acid solution, resulting in a hollow ARROW waveguide. Experiments investigating the mechanical strength of the hollow waveguides and the etching characteristics of the sacrificial core suggest design rules for the different core types. Integration of solid-core waveguides is accomplished by etching a ridge into the top dielectric layer of the ARROW structure. Improved optical performance can be obtained by forming the waveguides on top of a raised pedestal on the silicon substrate. Loss measurements on hollow ARROW waveguides fabricated in this manner gave loss coefficients of 0.26 cm-1 for liquid-core waveguides and 2.6 cm-1 for air-core waveguides. Fluorescence measurements in liquid-core ARROW waveguides have achieved single-molecule detection sensitivity. Integrated optical filters based on ARROW waveguides were fabricated, and preliminary results of a capillary electrophoresis separation device using a hollow ARROW indicate the feasibility of such devices for future investigation.
117

Investigations on Air-cooled Air Gap Membrane Distillation and Radial Waveguides for Desalination

Narayan, Aditya 30 August 2017 (has links)
This thesis presents investigations on air-cooled air gap membrane distillation for desalination and the application of radial waveguides based on total internal reflection for solar thermal desalination. Using an air-cooled design for an air gap membrane distillation (AGMD) process may result in significantly lower energy requirements for desalination. Experiments were conducted on AGMD module to study the effect of air gap, support mesh conductivity and hydrophobicity, condensing surface hydrophobicity. A novel modular design was used in which modules could be used in a series configuration to increase the flux value for the distillate. The output from the series configuration was found to have about three times the production from a single pass water-cooled system with the same temperature difference between the saline and clear water streams. The results also indicated that the mesh conductivity had a favorable effect on the flux value whereas the hydrophobicity of the mesh had no significant effect. The hydrophobicity of the condensing surface was favorable on two accounts: first, it led to an increase in the flux of the distillate at temperatures below 60 °C and second, the temperature difference of the saline feed when it enters and leaves the module is lower which can lead to energy savings and higher yields when used in a series configuration. The second part of the thesis considers use of low-cost radial waveguides to collect and concentrate solar energy for use in thermal desalination processes. The optical-waveguide-based solar energy concentrators are based on total internal reflection and minimize/eliminate moving parts, tracking structures and cost. The use of optical waveguides for thermal desalination is explored using an analytical closed-form solution for the coupled optical and thermal transport of solar irradiation through a radial planar waveguide concentrator integrated with a central receiver. The analytical model is verified against and supported by computational optical ray tracing simulations. The effects of various design and operating parameters are systematically investigated on the system performance, which is quantified in terms of net thermal power delivered, aperture area required and collection efficiency. Design constraints like thermal stress, maximum continuous operation temperature and structural constraints have been considered to identify realistic waveguide configurations which are suitable for real world applications. The study provides realistic estimates for the performance achievable with radial planar waveguide concentrator-receiver configuration. In addition to this, a cost analysis has been conducted to determine the preferred design configurations that minimize the cost per unit area of the planar waveguide concentrator coupled to the receiver. Considering applications to thermal desalination which is a low temperature application, optimal design configuration of waveguide concentrator-receiver system is identified that result in the minimum levelized cost of power (LCOP). / Master of Science
118

Systèmes communicants haut-débit et bas coûts par guide d’ondes en plastique / Plastic waveguides for high speed communications

Voineau, Florian 11 October 2018 (has links)
L’évolution actuelle de la société vers un monde de plus en plus numérique et connecté nécessite des liens de communication à la fois haut-débit et bas coûts. A cette fin, les guides d’ondes en plastique proposés ces dernières années visant les bandes de fréquences millimétriques (mm) offrent un compromis performance / coût très attractif.Profitant ainsi de larges bande-passantes de l’ordre de plusieurs gigahertz (GHz), des performances des technologies CMOS avancées aux fréquences mm mais également de tolérances d’assemblage relâchées, des systèmes de communication avec de tels guides d’ondes en plastique pourraient offrir des débits de plusieurs gigabits par seconde (Gb/s) sur des distances de plusieurs mètres de manière abordable.Dans ce travail, la conception d’un guide d’ondes en plastique est tout d’abord présentée en se basant à la fois sur des résultats théoriques et de simulation électromagnétique. Bien que les promesses de faible atténuation aient effectivement été confirmées, certaines limitations du confinement et de la robustesse aux contacts extérieurs sont également apparues. L’ajout d’une mousse protectrice est brièvement investiguée, mais une géométrie innovante de guide présentant des caractéristiques améliorées est principalement détaillée.Des thématiques « systèmes » sont ensuite explorées afin de construire un système de communication utilisant ce nouveau canal de propagation. Une architecture combinant la modulation de phase en quadrature (QPSK) et le multiplexage en fréquence est ainsi introduite. L’interface entre le circuit et le guide d’ondes a par ailleurs été identifiée comme une limitation potentielle à la bande-passante globale du système. Par conséquent, une transition très large-bande a été conçue et testée pour lever ce verrou. De même, en raison des inconvénients des techniques usuelles de démodulation de signaux mm QPSK, une topologie originale utilisant les non-linéarités des oscillateurs à injection a été développée.Enfin, la conception d’un émetteur mm en technologie silicium avancée (CMOS 28 nmFD-SOI) est décrite. Les contributions majeures incluent l’introduction de coupleurs hybrides intégrés à haute-performance ainsi que la réalisation d’un circuit de synchronisation. Celui-ci présente une large plage de capture et permet un fonctionnement à faible bruit de phase lorsque le système est verrouillé sur la cinquième harmonique du signal de référence. Des mesures sur signaux modulés ont également permis de mettre en évidence la capacité de l’émetteur à transmettre des débits très élevés de plusieurs Gb/s. / In a world willfully transitioning to the Digital Age, the thirst for connectivity demands high-speed communication links at low cost. In this context, affordable plastic waveguides have been proposed as a disruptive propagation channel in the millimeter-wave (mmW) range. Benefiting from multi gigahertz (GHz) bandwidths and mmW capabilities of advanced CMOS technologies as well as relaxed assembly tolerances requirements, cost-effective communication systems based on plastic waveguides could offer multi gigabits per second (Gb/s) data rates over several meters distances.In this work, the design of plastic waveguide channels is first discussed using both a theoretical approach and Electromagnetic (EM) simulations. Although low attenuation promises have been confirmed, some limitations are also highlighted, especially as regards confinement ability and robustness to external contacts. Solutions involving foam coating are briefly investigated and an innovative plastic waveguide design demonstrating improved characteristics is introduced.System-level topics are then explored in order to build a communication system using the previously presented channel. A new architecture, which combines Quadrature Phase Shift Keying (QPSK) and frequency multiplexing, is found to be much more suitable. The transition from the circuit to the plastic waveguide has also been identified as a potential bandwidth bottleneck. Consequently, a wideband microstrip to WR-12 transition has been designed. Another limitation concerning the demodulation of QPSK mmW signals is investigated and an original topology using the non-linearities of Injection Locked Oscillators (ILO) has been developed.Finally, the design of a mmW transmitter in an advanced silicon technology node (CMOS 28 nm FD-SOI) is described. Major contributions include the introduction of high-performance integrated hybrid couplers and the realization of a wide locking range synchronization circuit enabling low phase-noise operation when locked on the fifth harmonic of a reference signal. Measurements on modulated signals have validated the transmitter high data-rate capability of several Gb/s.
119

Asymptotic Analysis Of The Dispersion Characteristics Of Structural Acoustic Waveguides

Sarkar, Abhijit 06 1900 (has links)
In this work, we study the coupled dispersion characteristics of three distinct structural-acoustic waveguides, namely: -(1) a two-dimensional waveguide, (2) a fluid-filled circular cylindrical shell and (3)a fluid-filledelliptic cylindrical shell. Our primary interest is in finding coupled wavenumbers as functions of the fluid-structure coupling parameter(µ). Using the asymptotic solution methodology, we find the coupled wavenumbers as perturbations over the uncoupled wavenumbers of the component systems (the structure and the fluid). The asymptotic method provides us with analytical expressions of the coupled wavenumbers for small and large values of µ. The dispersion curves obtained from these extreme values of µ help in predicting the nature of the continuous transition of the wavenumber branches over the entire range of µ. Since the coupled wavenumbers are obtained as perturbations over the uncoupled wavenumbers, the perturbation term characterizes the effect of one medium over the other in terms of additional mass or stiffness. As is common in asymptotic methods, a particular form of the asymptotic expansion remains valid over a certain frequency range only. Hence, different scalings of the asymptotic parameter are used for different frequency ranges. In this regard, the method adopted uses principles of Matched Asymptotic Expansion (MAE). As mentioned above, we begin the study with a two-dimensional structural acoustic waveguide. Depending on the boundary condition at the top-edge of the fluid-layer (rigid or pressure-release), two cases are separately analyzed. In both these cases, only a single perturbation parameter (µ) is used. This is followed by the study of the axisymmetric mode vibration of a fluid-filled circular cylindrical shell. Here, in addition to , we include the Poisson’s ratio as another asymptotic parameter. The next problem studied is the beam mode (n =1)vibration of the same fluid-filled circular cylindrical shell. Here, the frequency is used as an asymptotic parameter (in addition to ) and the derivations proceed in two separate parts, one for the high frequency and the other for the low frequency. Having completed the n = 0 and n = 1 modes of the cylindrical shell, the higher order shell modes are studied using the simpler shallow shell theory. For the final system, viz., the elliptic cylindrical shell, another asymptotic parameter in the form of the eccentricity of the cross-section is used. Having derived the analytical expressions for the coupled wavenumbers and obtained the dispersion curves, a unified behavior of structural-acoustic systems is found to emerge. In all these systems, for small , the coupled wavenumbers are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-walled acoustic duct. The measure of closeness is quantified by . As µ increases, these wavenumber branches get shifted continuously till for large µ, the coupled wavenumber branches are better identified as perturbations to the wavenumbers of the pressure-release acoustic duct. At the coincidence region, the coupled structural wavenumber branch transits to the coupled acoustic wavenumber branchand vice-versa. As a result, at coincidence frequencies, while the uncoupled wavenumber branches intersect, due to the coupling, there is no longer an intersection. These common characteristics are shared amongst all the systems despite the difference in geometries. This suggests that the above discussed features capture the essential physics of sound-structure coupling in waveguides.This workthus presents a novel unified view-point to the topic. Along the way, some additional novel studies are conducted which do contribute to the completeness of the work. The free wavenumbers determined from the asymptotic expressions are usedto calculate the forced response of the two-dimensional waveguide due to a δ forcing. Using this analysis, we are able to come up with a novel explanation of the observation that with coupling the dispersion curves cannot intersect. Additionally, the effect of bulk flow in the acoustic fluid is also comprehensively studied for the easier case of the two-dimensional waveguide. Further, the well-known universal dispersion relation for the higher order circumferential modes of the in vacuo circular cylindrical shell is re-derived using a simpler method.
120

Um estudo de guias de onda segmentados em óptica integrada / Study of segmented waveguides in integrated optics

Isayama, Yuri Hayashi, 1989- 25 August 2018 (has links)
Orientadores: Hugo Enrique Hernández-Figueroa, Marcos Sergio Gonçalves / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-25T09:52:57Z (GMT). No. of bitstreams: 1 Isayama_YuriHayashi_M.pdf: 5833509 bytes, checksum: e1f49d9840e5dbbba44fd30da539d0bf (MD5) Previous issue date: 2014 / Resumo: Neste trabalho, foi realizado um estudo abordando os guias de onda periodicamente segmentados, procurando estudar o comportamento de seus modos de propagação através de simulações numéricas baseadas no Método dos Elementos Finitos 3D. É apresentada uma formulação para a análise modal dos guias de onda, de maneira que se possa estudar a influência de variações na geometria dos mesmos (altura, largura e período do núcleo) em suas características de guiamento. É abordado, também, o efeito que os materiais que compõem o guia de onda segmentado tem na relação de dispersão do guia. A análise crítica dos resutados é realizada por meio da Teoria de Modos Acoplados, a qual permite não somente justificar os resultados, como também fazer previsões, ainda que um tanto qualitativas, a respeito do comportamento esperado para estes guias e dos resultados das variações em sua construção. Por fim, alguns exemplos de possíveis configurações de guias de onda segmentados, projetados para operação dentro da faixa das comunicações ópticas, são apresentados, com o intuito de facilitar o projeto destas estruturas / Abstract: In this work, a study concerning periodically segmented waveguides was conducted, where the study of the behavior of its propagating modes through numerical simulations based on the 3D Finite Element Method was intended. A formulation for modal analysis of the waveguide is presented, so that it is possible to study the influence of geometry variations (height, width, and period of the core) on its guiding characteristics. It is also addressed the effect of the materials composing the waveguide on its dispersion relation. The critical analysis of the results is developed by means of the Coupled Mode Theory, which allows us not only to explain the results, but also make predictions, even though qualitative, concerning the expected behavior of the waveguides, and about the results of variations on the waveguide's construction. Finally, some examples of possible configurations of segmented waveguides, designed for operation within the optical communication band, are presented, with the objective of facilitating the design of such structures / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica

Page generated in 0.0867 seconds