• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 5
  • Tagged with
  • 21
  • 21
  • 21
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of a High Data Rate Modem (HDRM)

Orndorff, Tim, Puri, Amit, Smiley, Mike, Connell, John 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / A traditional Receiver, Modulator, Bit Synchronizer, Frame Synchronizer and Front-End Processor (FEP) with local RAID storage from numerous satellite ground station equipment providers is typically used to satisfy current needs in mission ground stations. The development of Software Defined Radios (SDRs) with reprogrammable personalities has led to the consolidation of these processing elements, and will become the standard for years to follow. CVG-Avtec Systems, Inc. has been a pioneer in the SDR industry, integrating several ground station functions into a one system solution. Its High Data Rate Modem (HDRM) architecture replaces racks of previous generation equipment, providing greater functionality in a smaller footprint. The Field Programmable Gate Array (FPGA) based HDRM is a one system solution that inputs Intermediate Frequency (IF) data and outputs packetized data over IP for data distribution. These new architectures are capitalizing on the revolution in electronics and networking technologies. This paper will discuss the architecture of the HDRM and how it optimizes ground station data processing in a high-rate environment.
2

Some issues in enabling technologies for high data rate reliable wireless communications: OFDM and adaptive ARQ

Minn, Hlaing 30 October 2018 (has links)
Generation by generation, wireless communication has advanced in various ways and provided reliable communication services at higher and higher data rates to the needs of more and more advanced wireless applications. Two main issues towards future wireless communications are high-speed transmission technique to provide high data rate services and reliable communication to ensure the required performance. This dissertation focuses on these two issues. Since orthogonal frequency division multiplexing (OFDM) has emerged as an enabling technique for high-speed transmission in dispersive environments, major and fundamental issues in OFDM, namely, synchronization, channel estimation, and peak-to-average power ratio (PAPR) reduction are addressed. For the required reliability, automatic repeat request (ARQ) schemes must be applied. Due to large potential performance improvement, adaptive ARQ schemes have recently attracted much attention and are also addressed here. We propose two improved OFDM timing synchronization methods which overcome the drawbacks of existing methods. We present a time-domain-based OFDM channel estimation which outperforms the existing time-domain-based approach and has a similar performance to the linear minimum mean square error estimator but with less complexity. For OFDM systems with transmit diversity, we present a reduced complexity channel estimation which has a comparable performance to the existing method for channels with relatively small delay spreads, but achieves much complexity saving. An approach to find the number of most significant channel taps is described for diverse channel environments. We analyze the effect of non-sample-spaced channel path on the channel estimation and propose a modification for further improvement. Timing synchronization, frequency synchronization and channel estimation are usually addressed separately. Since they can affect each other, the idea of jointly addressing all of them together is much desirable and pursued here. This joint approach reflects the actual performance and gives an opportunity to exploit some information obtained from one task in another, hence promising more improvement. The proposed training preamble-based joint timing and frequency synchronization utilizes some information from the channel estimation. The sync detection is also considered. We design the training symbol to achieve a better coarse timing synchronization. Methods to suppress or circumvent the interference in the frequency estimation caused by timing errors are presented. A new performance measure for OFDM timing synchronization is proposed which leads to obtaining optimal timing estimation setting. Next, we present a joint timing synchronization, frequency synchronization and channel estimation based on training preamble based maximum likelihood realization. Further complexity reduction by an adaptive scheme is also proposed. We address some fundamental questions on peak factors, sampling theorem and sampling series. We present several bounds of bandlimited functions and peak factor ratio bound of a continuous signal and its sampled signal. Some discussion on the requirements of sampling theorems and related aspects on sampling series are presented. We study PAPR behavior of some Reed-Muller codes in OFDM systems in an attempt to find a code with good error correction, low PAPR, efficient encoding/decoding and reasonable code rate. Some regularities of the second and third-order cosets of first order Reed-Muller codes with low PAPR are presented which indicates possibility of finding such code for OFDM. The main issues in adaptive ARQ schemes are how to design the adaptive system parameters and how to effectively sense the channel conditions. We present an approach for designing the adaptive ARQ system parameters based on the through put calculation and optimization. An alternative approach which avoids the tedious throughput calculation is also presented. An effective channel sensing algorithm which utilizes the error correcting capability is proposed. Incorporation of the adaptive frequency hopping concept into the ARQ scheme with adaptive error control is introduced which has a significant throughput improvement in slow fading channels. / Graduate
3

WIDEBAND, HIGH DATA RATE KU-BAND MODULATOR DRIVER AMPLIFIER FOR HIGH RELIABILITY SPACEBORNE APPLICATIONS

Gassmann, Jeremy D. 18 October 2010 (has links)
No description available.
4

BANDWIDTH LIMITED 320 MBPS TRANSMITTER

Anderson, Christopher 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / With every new spacecraft that is designed comes a greater density of information that will be stored once it is in operation. This, coupled with the desire to reduce the number of ground stations needed to download this information from the spacecraft, places new requirements on telemetry transmitters. These new transmitters must be capable of data rates of 320 Mbps and beyond. Although the necessary bandwidth is available for some non-bandwidth-limited transmissions in Ka-Band and above, many systems will continue to rely on more narrow allocations down to X-Band. These systems will require filtering of the modulation to meet spectral limits. The usual requirements of this filtering also include that it not introduce high levels of inter-symbol interference (ISI) to the transmission. These constraints have been addressed at CE by implementing a DSP technique that pre-filters a QPSK symbol set to achieve bandwidth-limited 320 Mbps operation. This implementation operates within the speed range of the radiation-hardened digital technologies that are currently available and consumes less power than the traditional high-speed FIR techniques.
5

A COMMERCIAL OFF THE SHELF CONTINUOUSLY TUNABLE HIGH DATA RATE SATELLITE RECEIVER

Varela, Julio, Conrad, Robert 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / TSI TelSys, Inc. is in the process of developing a production level, continuously tunable satellite receiver designed to support multiple high data rate, low earth and geostationary orbit missions in the 20 Mbps to 800 Mbps composite QPSK data rate range. This paper will evaluate market demands on satellite receivers and outline receiver design technique as a solution to high rate, multi-mission support.
6

High Explosive Radio Telemetry System

Crawford, Ted, Bracht, Roger, Johnson, Richard, Mclaughlin, Barry 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / This paper overviews the High Explosive Radio Telemetry (HERT) system, under co-development by Los Alamos National Laboratories and AlliedSignal Federal Manufacturing & Technologies. This telemetry system is designed to measure the initial performance of an explosive package under flight environment conditions, transmitting data from up to 64 sensors. It features high speed, accurate time resolution (10 ns) and has the ability to complete transmission of data before the system is destroyed by the explosion. In order to affect the resources and performance of a flight delivery vehicle as little as possible, the system is designed such that physical size, power requirements, and antenna demands are as small as possible.
7

High Data Rate X-Band Communications Subsystem

Dapore, Mark 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / A Communication Subsystem has been developed capable of 25 Megasymbol per Second (MSPS) data rates. The unit operates in the 8300 to 8400 MHz band and uses shaped QPSK for excellent spectral containment properties. The Communication Subsystem (CSS) has a number of features which make it attractive for many applications: (1) Data is convolutionally encoded inside the transmitter resulting in excellent link performance without using external hardware. (2) Data is encrypted inside the transmitter. The DES standard is currently implemented, however, military encryption is an option which requires minimal changes in the CSS design. (3) Frame Synchronization Sequences and Block Identification Numbers are inserted into the data by the CSS. (4) Cyclic Redundancy Checked Codes for each data block are generated within the CSS. (5) Health and Status of the CSS is formatted into digital words. (6) Mode Control, Key Maintenance, and Health and Status Reporting is easily handled through an RS-422 interface. (7) The CSS is ruggedized for launch environments and is highly reliable for space applications.
8

System Design of a High-Temperature Downhole Transceiver

Kerrigan, Brannon Michael 12 September 2018 (has links)
The oil and gas industry, aerospace, and automotive industries are constantly pushing technology beyond their current operational boundaries, spurring the need for extreme environment electronics. The oil and gas industry, in particular, is the oldest and largest market for high-temperature electronics, where the operating environment can extend up to 260 degrees Celsius. The electronics currently employed in this field are only rated to 200 degrees Celsius, but with the rise of wideband gap technologies, this could be extended to 250 degrees Celsius or more without the needed for active or passive cooling. This reduces the complexity, weight, and cost of the system while improving reliability. In addition, current downhole telemetry data rates are insufficient for supporting more sophisticated and higher resolution well-logging sensors. Increasing the data rates can also save the industry significant amount of time by decreasing the amount of well-logging excersions and by increasing the logging speed. Previous work done by this research group saw the prototyping of a high bit rate transceiver operating at 230 MHz - 300 MHz and 230 degrees Celsius; however, at these frequencies, the system could not meet size requirements. Thus, a new high-temperature high data rate transceiver design using the 2.4 GHz - 2.5 GHz ISM band is proposed to miniaturize the design and to allow for IC implementation. The transceiver was designed to meet the minimum specifications necessary to give designers flexibility between power consumption and performance. The performance of the design is simulated using AWR design environment software, which shows the system can support a downlink data rate up to 68 Mbps and an uplink data rate up to 170 Mbps across 10 channels. The effects temperature has on the system performance is also evaluated in the simulation. / Master of Science / The oil and gas industry is currently the largest and oldest market for high-temperature electronics. One of the major applications within this industry for high-temperature electronics is known as well-logging, during which a suite of sensors and systems is lowered into a well to survey the health and geology of the well. Among these sensors and systems, the communication system is one of the most crucial components as it relays real-time data back to the surface during the well-logging operation. Current high-temperature communication systems are capable of operating up to 200 ℃, meeting the operating requirements of current wells. As these wells deplete, however, new wells must be explored, and higher operating temperatures are expected. In addition, the communication systems currently employed fail to meet increasing data rate demands due to the growing complexity of the sensors. Recent developments in semiconductor technologies have given rise to devices, which can increase the operating temperature of electronics up to 250 ℃ while meeting demands for high data rate communication systems. Previous work has leveraged these devices to prototype such a system; however, the proof-of-concept failed to meet size and weight restrictions of practical systems. Therefore, a new system design for a high-temperature high data rate communication system is proposed. The system operates at 2.4 – 2.5 GHz to miniaturize the circuits and make chip implementation possible. The impacts of temperature on the system are investigated and the system performance is simulated within its intended operating temperature range. Developments from this research can be extended to the automotive and aerospace industries, where demand for high-temperature electronics is growing.
9

Étude d’une architecture d’émission/réception impulsionnelle ULB pour dispositifs nomades à 60 GHz / An ULB Transceiver for nomades link at 60 GHz

Hamouda, Cherif 11 December 2014 (has links)
Ce travail porte sur l'étude de faisabilité d'une architecture radio, dédiée aux applications WPANs nomades et faible consommation en utilisant la bande autour de 60 GHz. Des débits de l'ordre de Gbps, une compacité élevée et une consommation de puissance faible sont obtenus en réalisant une conception conjointe front-end antenne. Avant de proposer l'architecture adaptée au cahier de charge, une étude préalable du canal de propagation à 60 GHz est faite. Les deux principales normes de canal IEEE, le 802.15.3c et le 802.11.ad, sont étudiées. L'analyse d'une architecture impulsionnelle mono-bande adaptée aux systèmes à faible consommation montre une limitation du débit quand des antennes non directives sont utilisées dans la norme de canal 802.11.ad. Afin de remédier à ce problème, une architecture multi-bande impulsionnelle MBOOK à récepteur non-cohérent est proposée. Cette architecture autorise un haut débit avec l'utilisation de quatre sous bandes. Elle conduit également à une consommation faible grâce à l'utilisation d'un récepteur non-cohérent et d'une topologie différentielle de l'émetteur évitant l'intégration de combineurs. Pour valider le concept d'architecture proposée, des antennes différentielles dédiées à l'architecture différentielle sont conçues. Les premières antennes sont de type patch différentiel excité par des lignes microrubans. Ces dernières présentent des caractéristiques de rayonnement adaptées aux besoins du cahier de charge. Néanmoins elles occupent une surface importante. Afin d'avoir une meilleure compacité, un patch alimenté par couplage à fente est développé. Il exploite deux polarisations linéaires orthogonales excitées par une paire d'entrées différentielles. Afin d'obtenir la directivité élevée nécessaire pour les scénarios LOS à 60 GHz sans utiliser de réseaux d'antennes ou de lentilles diélectriques, des métamatériaux sont utilisés. La mesure des antennes est basée sur la réalisation d'une transition guide d'onde WR-15 ligne microruban pour connecter l'antenne à l'analyseur de réseau. La mesure de l'antenne patch différentielle présente une bonne concordance avec les résultats de simulations. La technologie TQP15 de TriQuint est utilisée pour concevoir les différents éléments de la partie front-end. L'évaluation de la consommation globale d'émetteur valide l'architecture proposée en termes de faible consommation. Ce travail se termine par une évaluation du débit du système en tenant en compte de l'influence de l'antenne et du canal de propagation. Cette évaluation prouve la potentialité de l'architecture en termes de haut débit. On propose finalement une technique basée sur la technologie LTCC pour l'assemblage antenne/front-end / This work deals with the feasibility study of a radio architecture dedicated to mobile WPAN applications at 60 GHz and characterized by a low power consumption. Data rates of the order of Gbps, high compactness and low power consumption are obtained by co-designing the antenna and the front-end. Before proposing the architecture matching the specification needs, a preliminary study of the propagation channel at 60 GHz is made. The two main standards IEEE 802.15.3c and 802.11.ad the channel are studied. The analysis of a single-band architecture suitable for low-power systems shows a data rate limitation when directional antennas are used in the standard channel 802.11.ad. To address this problem, a multi-band impulse architecture MBOOK using a non-coherent receiver is proposed. This architecture allows high throughput with the use of four sub-bands. It also leads to a low power consumption through the use of a non-coherent receiver and a differential transmitter topology avoiding combiners. To validate the concept of the proposed architecture, differential antennas dedicated to the differential architecture are designed. Patch antennas excited by differential microstrip lines fulfil the needs of the specifications but occupy a large area. In order to miniaturize the antenna, slot-fed patch antennas are designed using two orthogonal linear polarizations excited by a pair of differential inputs. To achieve the high directivity required in LOS scenarios without using antenna arrays or dielectric lenses, metamaterials are used. The antenna measurement is based on the realization of a WR-15 waveguide-to-microstrip line transition to connect the antenna to the network analyzer. The differential measurement of the antenna patch exhibits a good agreement with the simulated results. The TriQuint's TQP15 technology is used to design the various circuits of the front-end. The emitter architecture is validated once the overall consumption has been evaluated. This work ends with an evaluation of the throughput of the system taking into account the influence of the antenna and the propagation channel. This evaluation shows the potential of the architecture in terms of high throughput. We finally propose an approach based on the LTCC technology for the antenna / front-end assembly
10

Novel Strongly Coupled Magnetic Resonant Systems

Liu, Daerhan 21 March 2018 (has links)
Wireless power transfer (WPT) technologies have become important for our everyday life. The most commonly used near-field WPT method is inductive coupling, which suffers from low efficiency and small range. The Strongly Coupled Magnetic Resonance (SCMR) method was developed recently, and it can be used to wirelessly transfer power with higher efficiency over a longer distance than the inductive coupling method. This dissertation develops new SCMR systems that have better performance compared to standard SCMR systems. Specifically, two new 3-D SCMR systems are designed to improve the angular misalignment sensitivity of WPT systems. Their power transfer efficiency for different angular misalignment positions are studied and analyzed. Prototypes are built for both systems and their performance is validated through measurement. Furthermore, new planar broadband conformal SCMR (CSCMR) systems are developed that maintain high efficiency while providing significantly larger bandwidth than standard CSCMR systems. Such broadband CSCMR systems are used here for the first time to simultaneously accomplish highly efficient wireless power transfer and high data rate communication through the same wireless link. These systems that combine wireless power and communication are expected to enable next-generation applications with battery-less and “power-hungry” sensors. Example applications include implantable and wearable sensors as well as embedded sensors for structural health monitoring.

Page generated in 0.0728 seconds