1 |
Mechanismen protektiver und destruktiver Funktionen der Poly(ADP-Ribose)-Polymerase-1 (PARP-1) bei Zell- und GewebeschädigungenUllrich, Oliver 01 October 2002 (has links)
Während der letzten Dekade neurobiologischer Forschung wurde deutlich, dass inflammatorische Vorgänge in einem Netwerk nicht-neuronaler und neuronale Zellen wesentlich zur Entstehung und zur Progredienz einiger wichtiger neurodegenerativer Erkrankungen beitragen. Therapeutische Ansätze sollten daher auch auf die Protektion initial überlebender Neurone vor dieser sekundären inflammatorischen Schädigung zielen. Ein wesentlicher Bestandteil dieser sekundären Schädigung besteht aus der Migration von Makrophagen und Mikrogliazellen in die Regionen neuronaler Schädigung, wo sie grosse Mengen an toxischen Zytokinen und Sauerstoffradikalen freisetzen. In einer Makrophagen-ähnlichen Zelllinie, sowie in phagozytierenden Mikrogliazellen wurde eine nukleäres proteolytisches System identifiziert, dass in der Lage war, oxidativ geschädigte Kernproteine zu erkennen und abzubauen. Im Gegensatz zu dem bisherigen Konzept relativer Langlebigkeit der Histonproteine, wurde diese nach oxidativer Schädigung innerhalb von Minuten abgebaut und vom Chromatin entfernt. Dieser schnelle Abbau war von der nicht-kovalenten Interaktion der automodifizierten Poly(ADP-Ribose)-Polymerase-1 (PARP-1) mit dem 20S Proteasom abhängig. Die PARP-1 wurde somit als ein Signalmolekül zwischen dem Chromatinschaden und der Einleitung einer protektiven Zellantwort charakterisiert, die Mikrogliazellen das Überleben ihres eigenen Aktivierungszustandes ermöglicht. Es zeigte sich, dass dieses PARP-Proteasom-System in Abhängigkeit vom Differenzierungsgrad Makrophagen-ähnlicher Zellen abhängig ist und auch funktionell in die Chemotherapieresistenz humaner Leukämiezellen involviert ist. Darüberhinaus regulierte die PARP-1 auch die Expression des Integrins CD11a durch Interaktion mit dem translozierten NF-kappaB und HMG-I(Y) und dadurch die Migration von Mikrogliazellen zum Ort der neuronalen Schädigung. Diese Ergebnisse machem die PARP-1 zu einem potentiellen Ziel therapeutischer Interventionen zur Verhinderung der destruktiven Migration von Mikrogliazellen, womit eine Protektion initial überlebender Neurone vor weiterer inflammatorischer Schädigung erreicht werden könnte. / During the last decade of neurobiological research, it became clear that inflammatory pathways in the CNS, involving a network of non-neuronal and neuronal cells, are contributing mainly to the onset and progress of several major neurodegenerative diseases. Therapeutic approaches must therefore focus on the protection of initially surviving neurons from this secondary inflammatory damage. One major component of secondary neuronal damage is the migration of macrophages and microglia cells towards the sites of injury where they produce large amounts of toxic cytokines and oxygen radicals. In a macrophage-like cell line and in phagocytosing microglial cells a nuclear proteolytic system was identified, which was able to recognize and degrade oxidatively-damaged nuclear proteins, in particular histones. In contrast to the previous concept of relatively long-living histone proteins, they are rapidly degraded and removed from the chromatin within minutes after oxidative damage. This rapid degradation was dependent on the non-covalent interaction of the 20S proteasome with the automodified poly(ADP-ribose)-polymerase-1 (PARP-1). Therefore, the PARP-1 has been identified as a signal molecule between the detection of a chromatin-damage and a protective cellular response, which enables microglial cells to survive their own activation state. The regulation of this PARP-proteasome-system depends on the differentiation state of macrophage-like cells and is also functionally involved in the chemotherapy-resistance of human leukemia cells. Moreover, PARP-1 regulates the expression of the integrin CD11a by interaction with the translocated NF-kappaB and HMG-I(Y) and therefore microglia migration towards the sites of neuronal injury. These findings renders the PARP as potential target for therapeutic interventions to inhibit destructive microglial migration and therefore to protect initially surviving neurons from inflammatory damage.
|
2 |
Kristallstrukturanalyse des kohlenhydratbindenden Moduls 27-1 der Beta-Mannanase 26 aus Caldicellulosiruptor saccharolyticus im Komplex mit Mannohexaose und Kristallisation der ATPase HP0525 aus Helicobacter pyloriRoske, Yvette 28 July 2005 (has links)
Kohlenhydrat-bindende Module (CBMs) sind die bekanntesten nicht-katalytischen Module, die mit Enzymen assoziiert sind, welche die pflanzliche Zellwand hydrolysieren. Die beta-Mannanase 26 von Caldicellulosiruptor saccharolyticus, Stamm Rt8B.4, ist eine thermostabile modulare Glycosidhydrolase, die N-terminal zwei dicht aufeinander folgende nicht-katalytische kohlenhydratbindende Module besitzt. Diese spezifisch beta-Mannan bindenden CBMs wurden kürzlich als Mitglieder der CBM-Familie 27 klassifiziert. Im ersten Teil dieser Arbeit wird die Kristallisation und Strukturanalyse des ersten kohlenhydratbindenden Moduls der ß-Mannanase aus C. saccharolyticus (CsCBM27-1) mit einer gebundenen Mannohexaose und in ligandfreier Form beschrieben. Grundlage für diese Arbeit waren Daten aus der isothermen Titrationskalorimetrie zur Quantifizierung der Affinität von CsCBM27-1 für lösliche Mannooligosaccharide. Die hier präsentierte hochaufgelöste Kristallstruktur des ungebundenen und Mannohexaose gebundenen CsCBM27-1 erlaubt weitere Einblicke in die Interaktion ß-Mannan bindender CBMs mit ihren entsprechenden Liganden. CsCBM27-1 zeigt eine typische ß-sandwich jellyroll-Struktur mit gebundenen Kalziumion. Die Mannohexaosebindung wird durch drei dem Lösungsmittel zugängliche Tryptophanreste und einige direkte Wasserstoffbrückenbindungen vermittelt. Der zweite Teil der Arbeit beschäftigt sich mit der Reinigung und Kristallisation der ATPase Virb11 HP0525 aus Helicobacter pylori. Das native Protein HP0525 ließ sich gut rekombinant herstellen und reinigen. Es wurde aus einer von mehreren Kristallisationsbedingungen durch Optimierung der Kristallisationskomponenten ausreichend große Kristalle erhalten, die gute Diffraktionseigenschaften zeigten. Neben dem nativen Protein wurde Selenomethionin-substituiertes Protein synthetisiert und gereinigt. Von diesem Protein SeMet-HP0525, resultierten hexagonale Kristalle. Zur Derivat-Datensatzsammlung ist es aufgrund der Publikation der Kristallstruktur dieser hexameren ATPase HP0525 nicht mehr gekommen. Weitere strukturelle Untersuchungen an diesem Protein wurden als nicht mehr erforderlich angesehen. / Carbohydrate-binding modules (CBMs) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. Caldicellulosiruptor saccharolyticus strain Rt8B.4 Man26 is a thermostable modular glycoside hydrolase beta-mannanase which contains two non-catalytic modules in tandem at its N-terminus. These modules were recently shown to function primarily as ß-mannan-binding modules and have accordingly been classified as members of a novel family of CBMs, family 27. In the first part of this study, the crystallization and crystal structure analysis of the first carbohydrate binding module (CsCBM27-1) of the beta-mannanase from C. saccharolyticus in native and mannohexaose-bound form is described. The basis for this study were data from isothermal titration calorimetry for quantifying the binding affinity of CsCBM27-1 for soluble mannooligosaccharidesBoth structures permit further insights into the interaction of beta-mannan binding CBMs with their corresponding ligands. CsCBM27-1 shows the typical beta-sandwich jellyroll fold observed in other CBMs with a single calcium ion bound opposite to the ligand binding site. This arrangement is similar to topologies of other CBM families. The crystal structures reveal that the overall fold of CsCBM27-1 remains virtually unchanged upon sugar binding and that binding is mediated by three solvent-exposed tryptophan residues and few direct hydrogen bonds. The second part of this study addressed the purification and crystallization of the VirB11 ATPase HP0525 of Helicobacter pylori. The native HP0525 protein was produced in recombinant Escherichia coli and purified for crystallization. One of several crystallization experiments yielded large crystals by optimization of the concentration of the crystallization components. The crystals revealed good diffraction behavior. In addition to the native protein, selenomethionine-substituted HP0525 was produced and purified. Hexagonal crystals were obtained from the SeMet-HP0525. No derivative datasets were collected, because the crystal structure of the hexameric ATPase HP0525 was published by Yeo et al. (2000). Further structural investigations for the protein HP0525 were judged unnecessary.
|
Page generated in 0.021 seconds