• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Système éolien basé sur une MADA : contribution à l'étude de la qualité de l'énergie électrique et de la continuité de service / Wind energy conversion system based on DFIG : contribution to the study of electric power quality and continuity of service

Gaillard, Arnaud 30 April 2010 (has links)
Les systèmes éoliens seront certainement amenés, à court terme, à contribuer aux services systèmes (compensation de la puissance réactive, stabilité du plan de tension,…) comme le font actuellement les alternateurs de centrales classiques. Ils seront également amenés à participer à l'amélioration de la qualité de l'énergie électrique, filtrage des courants harmoniques en particulier. De plus, vu l'augmentation de la puissance éolienne installée et fournie au réseau électrique, les éoliennes devront certainement assurer, à plus long terme, une continuité de service suite à un défaut électrique sur le réseau ou sur un des éléments de la chaîne de conversion électromécanique (interrupteurs de puissance, capteurs,…) afin d'améliorer leur fiabilité. Dans ces travaux de thèse, nous avons montré dans un premier temps qu'un système éolien basé sur une Machine Asynchrone à Double Alimentation (MADA) possédant un gain d'amplification entre les courants rotoriques et statoriques peut participer efficacement à l'amélioration de la qualité de l'énergie électrique en compensant simultanément de la puissance réactive et des courants harmoniques présents sur le réseau, sans pour autant nécessiter un surdimensionnement des éléments de la chaîne de conversion électromécanique. Ensuite, nous avons étudié des topologies dites “fault tolerant” de convertisseurs statiques triphasés et leurs commandes associées, permettant de garantir la continuité de service en présence de défauts éventuels d'un semi-conducteur ou d'un capteur de courant. Pour réduire autant que possible le temps de détection de défaut, nous avons ciblé un composant FPGA (Field Programmable Gate Array) pour le contrôle/commande “fault tolerant”. Les résultats de simulation, de prototypage “FPGA in the loop” et expérimentaux démontrent les performances des méthodes proposées / Wind Energy Conversion Systems (WECS) will probably be intended, in a short term, to provide ancillary services such as reactive power compensation, as done by conventional generators of power plants and/or participate in improving electric power quality by filtering harmonic currents. Furthermore, by considering the increased installed wind power, connected to the grid, WECS will certainly ensure, in long term, the continuity of service following an electrical fault on the grid or on one of elements of the electromechanical conversion (power switches, sensors…) to ensure their reliability. In this thesis, we have studied in the first part a WECS based on Doubly Fed Induction Generator (DFIG) with an amplification gain between the stator and rotor currents. We have demonstrated that such a WECS can efficiently improving the electric power quality by compensating simultaneously reactive power and harmonic currents on the grid, without requiring any oversized elements in the electromechanical conversion chain. Then, we studied fault tolerant converter topologies and associated controls, ensuring the continuity of service in the presence of possible faults of a semiconductor or a current sensor. To minimize the time fault detection, we used an FPGA (Field Programmable Gate Array) to implement the fault tolerant controller. Simulation, “FPGA in the loop” prototyping and experimental results have validated the performances of the proposed methods and fault tolerant topologie
2

Wind energy conversion system connected to the grid / Sistema de conversÃo de energia eÃlica interligado à rede

JÃssica Santos GuimarÃes 26 February 2016 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Este trabalho apresenta o desenvolvimento de um sistema de conversÃo de energia eÃlica (WECS - Wind Energy Conversion System) com gerador sÃncrono de imà permanente (PMSG - Permanent Magnet Synchronous Generator) operando com velocidade variÃvel. O circuito de processamento de energia à dividido em dois estÃgios. No estÃgio AC-DC, uma topologia boost bridgeless trifÃsica unidirecional absorve a energia fornecida pelo gerador e injeta no link DC. Neste conversor, a tÃcnica de autocontrole permite a extraÃÃo de corrente com baixa taxa de distorÃÃo harmÃnica (THD â Total Harmonic Distortion) e alto fator de potÃncia. AlÃm disso, um algoritmo de rastreamento do mÃximo ponto de potÃncia (MPPT - Maximum Power Point Tracking) determina a velocidade de rotaÃÃo do gerador que irà garantir o ponto adequado de operaÃÃo. Este modo de operaÃÃo à mantido enquanto a potÃncia disponÃvel for menor que a potÃncia nominal do conversor. Caso contrÃrio, o algoritmo de MPPT à desabilitado e uma malha de controle de potÃncia mecÃnica garante a condiÃÃo nominal de potÃncia. No estÃgio de conversÃo DC-AC, um inversor trifÃsico ponte completa, cujo controle à baseado na teoria das potÃncias instantÃneas, provà energia à rede elÃtrica cumprindo com as exigÃncias normativas. Uma anÃlise teÃrica completa à apresentada assim como os resultados de simulaÃÃo considerando o protÃtipo com a potÃncia nominal de 6 kW equivalente a turbina eÃlica utilizada. Resultados experimentais satisfatÃrios sÃo apresentados para uma potÃncia de 3 kW: o rendimento do sistema completo à superior a 90%; a corrente que circula no gerador apresenta THD de aproximadamente 2,6% e fator de potÃncia de 0,942; e a corrente injetada na rede elÃtrica possui THD de 1,639% e fator de potÃncia de 0,994. / This master thesis presents the development of a Wind Energy Conversion System (WECS) with Permanent Magnet Synchronous Generator (PMSG) operating at variable speed. The energy processing circuit is divided into two stages. In the AC-DC stage, an unidirectional three-phase bridgeless boost topology absorbs the energy supplied by the generator and injects it into the DC link. In this converter, the self-control technique allows the current extraction with low THD and high power factor. Furthermore, a - Maximum Power Point Tracking (MPPT) determines the rotational speed of the generator that will ensure the proper operating point. This mode of operation is maintained while the available power remains lower than the converter rated power. Otherwise, the MPPT algorithm is disabled and a mechanical power control loop ensures the rated power condition. On the DC-AC conversion stage, a three-phase full-bridge inverter, whose control is based on the theory of instantaneous power, provides energy to the grid complying with regulatory requirements. A complete theoretical analysis is presented as well as the simulation results considering the prototype with a rated power of 6 kW equivalent of wind turbine used. Satisfactory experimental results are shown to an output of 3 kW: the efficiency of the total system is above 90%; the current through the generator has a THD of about 2.6% with a power factor of 0.942; moreover, the current injected into the grid has a THD of about 1.639% and a power factor of 0.994.
3

Design and Analysis of a Small-Scale Wind Energy Conversion System

Dalala', Zakariya Mahmoud 26 March 2014 (has links)
This dissertation aims to present detailed analysis of the small scale wind energy conversion system (WECS) design and implementation. The dissertation will focus on implementing a hardware prototype to be used for testing different control strategies applied to small scale WECSs. Novel control algorithms will be proposed to the WECS and will be verified experimentally in details. The wind turbine aerodynamics are presented and mathematical modeling is derived which is used then to build wind simulator using motor generator (MG) set. The motor is torque controlled based on the turbine mathematical model and the generator is controlled using the power electronic conversion circuits. The power converter consists of a three phase diode bridge followed by a boost converter. The small signal modeling for the motor, generator, and power converter are presented in details to help building the needed controllers. The main objectives of the small scale WECS controller are discussed. This dissertation focuses on two main regions of wind turbine operation: the maximum power point tracking (MPPT) region operation and the stall region operation. In this dissertation, the concept of MPPT is investigated, and a review of the most common MPPT algorithms is presented. The advantages and disadvantaged of each method will be clearly outlined. The practical implementation limitation will be also considered. Then, a MPPT algorithm for small scale wind energy conversion systems will be proposed to solve the common drawback of the conventional methods. The proposed algorithm uses the dc current as the perturbing variable and the dc link voltage is considered as a degree of freedom that will be utilized to enhance the performance of the proposed algorithm. The algorithm detects sudden wind speed changes indirectly through the dc link voltage slope. The voltage slope is also used to enhance the tracking speed of the algorithm and to prevent the generator from stalling under rapid wind speed slow down conditions. The proposed method uses two modes of operation: A perturb and observe (PandO) mode with adaptive step size under slow wind speed fluctuation conditions, and a prediction mode employed under fast wind speed change conditions. The dc link capacitor voltage slope reflects the acceleration information of the generator which is then used to predict the next step size and direction of the current command. The proposed algorithm shows enhanced stability and fast tracking capability under both high and low rate of change wind speed conditions and is verified using a 1.5-kW prototype hardware setup. This dissertation deals also with the WECS control design under over power and over speed conditions. The main job of the controller is to maintain MPPT while the wind speed is below rated value and to limit the electrical power and mechanical speed to be within the system ratings when the wind speed is above the rated value. The concept of stall region and stall control is introduced and a stability analysis for the overall system is derived and presented. Various stall region control techniques are investigated and a new stall controller is proposed and implemented. Two main stall control strategies are discussed in details and implemented: the constant power stall control and the constant speed stall control. The WECS is expected to work optimally under different wind speed conditions. The system should be designed to handle both MPPT control and stall region control at the same time. Thus, the control transition between the two modes of operation is of vital interest. In this dissertation, the light will be shed on the control transition optimization and stabilization between different operating modes. All controllers under different wind speed conditions and the transition controller are designed to be blind to the system parameters pre knowledge and all are mechanical sensorless, which highlight the advantage and cost effectiveness of the proposed control strategy. The proposed control method is experimentally validated using the WECS prototype developed. Finally, the proposed control strategies in different regions of operation will be successfully applied to a battery charger application, where the constraints of the wind energy battery charger control system will be analyzed and a stable and robust control law will be proposed to deal with different operating scenarios. / Ph. D.
4

Weighted Average Based Clock Synchronization Protocols For Wireless Sensor Networks

Swain, Amulya Ratna 04 1900 (has links) (PDF)
Wireless Sensor Networks (WSNs) consist of a large number of resource constrained sensor nodes equipped with various sensing devices which can monitor events in the real world. There are various applications such as environmental monitoring, target tracking forest fire detection, etc., which require clock synchronization among the sensor nodes with certain accuracy. However, a major constraint in the design of clock synchronization protocols in WSNs is that sensor nodes of WSNs have limited energy and computing resources. Clock synchronization process in the WSNs is carried out at each sensor node either synchronously, i.e., periodically during the same real-time interval, which we call synchronization phase, or asynchronously, i.e., independently without worrying about what other nodes are doing for clock synchronization. A disadvantage of asynchronous clock synchronization protocols is that they require the sensor nodes to remain awake all the time. Therefore, they cannot be integrated with any sleep-wakeup scheduling scheme of sensor nodes, which is a major technique to reduce energy consumption in WSNs. On the other hand, synchronous clock synchronization protocols can be easily integrated with the synchronous sleep-wakeup scheduling scheme of sensor nodes, and at the same time, they can provide support to achieve sleep-wakeup scheduling of sensor nodes. Essentially, there are two ways to synchronize the clocks of a WSN, viz. internal clock synchronization and external clock synchronization. The existing approaches to internal clock synchronization in WSNs are mostly hop-by-hop in nature, which is difficult to maintain. There are also many application scenarios where external clock synchronization is the only option to synchronize the clocks of a WSN. Besides, it is also desired that the internal clock synchronization protocol used is fault-tolerant to message loss and node failures. Moreover, when the external source fails or reference node fails, the external clock synchronization protocol should revert back to internal clock synchronization protocol with/without using any reference node. Towards this goal, first we propose three fully distributed synchronous clock synchronization protocols, called Energy Efficient and Fault-tolerant Clock Synchronization (EFCS) protocol, Weighted Average Based Internal Clock Synchronization (WICS) protocol, and Weighted Average Based External Clock Synchronization (WECS) protocol, for WSNs making use of peer-to-peer approach. These three protocols are dynamically interchangeable depending upon the availability of external source or reference nodes. In order to ensure consistency of the synchronization error in the long run, the neighboring nodes need to be synchronized with each other at about the same real time, which requires that the synchronization phases of the neighboring nodes always overlap with each other. To realize this objective, we propose a novel technique of pullback, which ensures that the synchronization phases of the neighboring nodes always overlap. In order to further improve the synchronization accuracy of the EFCS, WICS, and WECS protocol, we have proposed a generic technique which can be applied to any of these protocols, and the improved protocols are referred as IEFCS, IWICS, and IWECS respectively. We then give an argument to show that the synchronization error in the improved protocols is much less than that in the original protocols. We have analyzed these protocols for bounds on synchronization error, and shown that the synchronization error is always upper bounded. We have evaluated the performance of these protocols through simulation and experimental studies, and shown that the synchronization accuracy achieved by these protocols is of the order of a few clock ticks even in very large networks. The proposed protocols make use of estimated drift rate to provide logical time from the physical clock value at any instant and at the same time ensure the monotonicity of logical time even though physical clock is updated at the end of each synchronization phase. We have also proposed an energy aware routing protocol with sleep scheduling, which can be integrated with the proposed clock synchronization protocols to reduce energy consumption in WSNs further.
5

Ανάπτυξη δυναμικού μοντέλου και έλεγχος ανεμογεννήτριας συνδεδεμένης στο δίκτυο και σε αυτόνομη λειτουργία εφοδιασμένη με διάταξη αποθήκευσης ενέργειας

Δημητρακάκης, Στέφανος 18 June 2014 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη και τη μοντελοποίηση ενός αιολικού συστήματος παραγωγής ηλεκτρικής ενέργειας βασισμένο σε σύγχρονη γεννήτρια μόνιμου μαγνήτη (PMSG). Ειδικότερα, παρουσιάζονται και αναλύονται όλα τα τμήματα που αποτελούν το αιολικό σύστημα καθώς και οι λογικές ελέγχου που ακολουθήθηκαν για την αποτελεσματική λειτουργία του. Επιπλέον, μελετάται και μοντελοποιείται μια διάταξη αποθήκευσης ενέργειας από την οποία πλαισιώνεται το αιολικό σύστημα κατά την αυτόνομη λειτουργία του. Τέλος, παρουσιάζονται και σχολιάζονται τα αποτελέσματα της προσομοίωσης της λειτουργίας του συστήματος, σε σύνδεση με το δίκτυο και κατά την αυτόνομη λειτουργία του. Για την ανάπτυξη του μοντέλου και την προσομοίωση χρησιμοποιήθηκε το πρόγραμμα Simulink/Matlab. Στο Κεφάλαιο 1 γίνεται αναφορά στο ενεργειακό πρόβλημα και μια γενική εισαγωγή στις ανανεώσιμες πηγές ενέργειας. Επιπλέον, δίνονται διάφορες πληροφορίες γύρω από την αιολική ενέργεια και αναλύονται τα πλεονεκτήματα και μειονεκτήματα της χρήσης ανεμογεννητριών. Επίσης, παρουσιάζεται η δομή μιας ανεμογεννήτριας και παραθέτονται διάφοροι τύποι ανεμογεννητριών, ενώ δίνονται και οι βασικές σχέσεις μετατροπής της αιολικής ενέργειας σε ηλεκτρική. Στο Κεφάλαιο 2 γίνεται ανάλυση κάθε τμήματος της ανεμογεννήτριας (πτερωτή, σύστημα μετάδοσης κίνησης, γεννήτρια) και παρατίθενται οι εξισώσεις που περιγράφουν τη λειτουργία τους. Επιπρόσθετα, παρουσιάζεται ο τρόπος μοντελοποίησης του κάθε τμήματος στο περιβάλλον του Simulink. Ιδιαίτερη έμφαση δόθηκε στη μελέτη της σύγχρονης γεννήτριας μόνιμου μαγνήτη καθώς παρουσιάζεται με λεπτομέρεια η δομή της καθώς και οι αρχές που διέπουν τη λειτουργία της. Τέλος, δίνονται όλα τα χαρακτηριστικά μεγέθη της ανεμογεννήτρια που χρησιμοποιήθηκε στην παρούσα εργασία. Στο Κεφάλαιο 3 αρχικά, γίνεται μια γενική παρουσίαση των στοιχείων που αποτελούν τους μετατροπείς, ενώ στη συνέχεια παρουσιάζονται οι βασικές κατηγορίες μετατροπέων που υπάρχουν και αναφέρονται μερικοί βασικοί τύποι μετατροπέων που βρίσκουν εφαρμογή σε αιολικά συστήματα γενικότερα. Έπειτα, το κεφάλαιο επικεντρώνεται στους μετατροπείς που χρησιμοποιήθηκαν στο αιολικό σύστημα της παρούσας εργασίας καθώς εξηγείται ο τρόπος λειτουργίας τους και παρουσιάζεται ο τρόπος μοντελοποίησης τους στο Simulink. Έμφαση δόθηκε στον dc/dc μετατροπέα ανύψωσης τάσης που χρησιμοποιήθηκε, όπου γίνεται διαστασιολόγηση και παρουσιάζεται μια μικρή προσομοίωση της λειτουργίας του. Τέλος, παρουσιάζεται, επίσης, το φίλτρο που τοποθετείται στην έξοδο του αντιστροφέα. Στο Κεφάλαιο 4 περιγράφονται αναλυτικά η τεχνική διαμόρφωσης εύρους παλμών (PWM) και η τεχνική της ημιτονοειδούς διαμόρφωσης εύρους παλμών (SPWM), οι οποίες και εφαρμόστηκαν για την παλμοδότηση των μετατροπέων. Στη συνέχεια, περιγράφονται αναλυτικά οι μηχανισμοί ελέγχου που εφαρμόστηκαν με τη βοήθεια PI ελεγκτών, τόσο στην πλευρά της μηχανής (dc/dc μετατροπέας ανύψωσης τάσης) όσο και στον αντιστροφέα του αιολικού συστήματος. Στο Κεφάλαιο 5 παρουσιάζονται και σχολιάζονται τα αποτελέσματα της προσομοίωσης του αιολικού συστήματος σε σύνδεση με το δίκτυο. Το σύστημα προσομοιώνεται για δύο περιπτώσεις, σε πρώτη φάση γίνεται προσομοίωση του συστήματος υπό σταθερή ταχύτητα ανέμου ίση με 12 m/s και σε δεύτερη φάση προσομοιώνεται η λειτουργία του συστήματος για βηματικές μεταβολές της ταχύτητας του ανέμου. Στο Κεφάλαιο 6 μελετάται η αυτόνομη λειτουργία του αιολικού συστήματος το οποίο, πλέον, πλαισιώνεται με μια διάταξη αποθήκευσης ενέργειας. Αρχικά, παρουσιάζεται το σύστημα αποθήκευσης ενέργειας που χρησιμοποιήθηκε. Συγκεκριμένα η συστοιχία μπαταριών της οποίας δίνονται τα χαρακτηριστικά μεγέθη, καθώς και το μοντέλο της στο Simulink. Επίσης, παρουσιάζεται και μοντελοποιείται ο dc/dc μετατροπέας δύο κατευθύνσεων ο οποίος συνδέει τη συστοιχία με το υπόλοιπο σύστημα. Στη συνέχεια, περιγράφεται αναλυτικά ο μηχανισμός ελέγχου που εφαρμόζεται στη διάταξη αποθήκευσης ενέργειας για τον έλεγχο της φόρτισης/εκφόρτισης. Στο τέλος του κεφαλαίου παρουσιάζονται τα αποτελέσματα της προσομοίωσης του αυτόνομου αιολικού συστήματος για σταθερή ταχύτητα ανέμου-μεταβαλλόμενο φορτίο και για μεταβαλλόμενο άνεμο-σταθερό φορτίο. / In this thesis, a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG) was studied and simulated. All parts of the WECS are presented and discussed in detail. Furthermore, control strategies for the generator-side converter and the voltage source inverter are developed. The WECS is simulated both in grid connected and stand-alone mode. In the stand-alone mode, the WECS is supplied with an energy storage system for which a bi-directional buck/boost converter and control strategy was designed. Finally, simulation results are presented and performance of the system in various modes of operation is evaluated. Simulink/Matlab is used for modeling and simulating the WECS. At the beginning of Chapter 1, a discussion of energy crisis and renewable energy sources is held. Furthermore, information about wind energy has been reviewed and its benefits and drawbacks are examined. In addition, the structure of a wind turbine and the principles of converting wind energy into electricity are presented. In Chapter 2 all parts of the wind turbine are studied and its characteristics are specified. Even more, the model of every part in Simulink is presented. Theoretical background, structure and operation principles of PMSG are presented in detail. In Chapter 3, firstly a general presentation of converters components takes place. Then the major existing categories of converter are presented and some basic types of converters, which are generally used in WECS, are mentioned. Moreover, the chapter focuses on the converters that are used in this thesis, explaining the way they operate. After all, their models in Simulink are shown. Emphasis was given to the dc/dc boost converter whose parameters are calculated and its operation is simulated. Finally, there is a presentation of the filter which was placed at the output of the inverter. In Chapter 4, Pulse-width Modulation (PWM) and Sinusoidal Pulse-width Modulation (SPWM) techniques that are used in this thesis are described. Moreover, the control strategy for the generator-side converter with maximum power extraction is presented. The control strategy of the voltage sourced inverter is shown as well. In Chapter 5 simulation results of the grid connected WECS are presented and evaluated. On the first part of the presentation, the WECS is simulated for constant wind speed (12m/s), and in the second part for step-changed wind speed. In Chapter 6 the stand-alone operation of the WECS is studied and supplied with an energy storage system. Initially, there is an analysis of the energy storage system, which was used, and in particular the battery bank, whose characteristics are given. Moreover, a Bi-directional dc/dc Buck-Boost converter which is used to interconnect the battery bank to the dc-link is presented and modeled. Afterwards, there is a detailed description of the control strategy used in order to control charging / discharging of the battery bank. At the end of this chapter, simulation results of two different stand-alone operation modes are presented, one with constant wind speed and variable load and the other one with step-changing wind speed and constant load.

Page generated in 0.031 seconds