• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemische und strukturelle Untersuchungen an Proteinen des reduktiven Acetyl-CoA-Weges

Götzl, Sebastian 25 November 2014 (has links)
Zahlreiche strikt anaerob lebende Mikroorganismen, darunter acetogene Bakterien, Sulfatreduzierer und methanogene Archaeen, nutzen den reduktiven Acetyl-CoA-Weg zur autotrophen Kohlenstoff-Fixierung oder Energiegewinnung. Die letzten Schritte der Acetyl-CoA-Bildung beruhen hierbei auf dem Zusammenspiel dreier Proteine, dem Corrinoid-Eisen/Schwefel-Protein (CoFeSP), der Methyltetrahydrofolat:CoFeSP-Methyltransferase (MeTr) und dem Acetyl-CoA-Synthase/CO-Dehydrogenase-Komplex (ACS/CODH). In der vorliegenden Arbeit wurde die Substratbindung an MeTr durch thermodynamische und kinetische Messungen untersucht. MeTHF bindet stärker an das Enzym als das demethylierte Produkt Tetrahydrofolat (THF) und scheint dabei einem einstufigen Bindungsmodell zu folgen. Das Substrat wird bei der Bindung an MeTr protoniert, wobei Asn200 eine protonierte H-N5(+)-CH3-Position des MeTHF durch eine alternative Konformation stabilisieren könnte. Asp44 und Asp76 bilden eine funktionelle Dyade bei der Substratbindung, kommen als Protondonoren zur Substrataktivierung jedoch nicht in Frage. Die Kristallstruktur von CoFeSP wurde erstmals vollständig mit der flexiblen N-terminalen [4Fe4S]-Cluster-Bindedomäne bestimmt. Die für die Cobalamin-Bindedomäne erwarteten Konformationsänderungen wurden anhand der Interaktion mit dem reduktiven Aktivator von CoFeSP (RACo) analysiert. Durch Förster-Resonanzenergietransfer wurde eine Annäherung der ortsspezifisch markierten CoFeSP-Positionen beobachtet und anhand des Fluoreszenzsignals die Kinetik der Komplexbildung mit RACo bestimmt. Durch gepulste Elektronendoppelresonanz konnte ebenfalls eine Abstandsänderung nachgewiesen werden. ACS wurde als apo-Enzym gereinigt und durch NiCl2-Rekonstitution in die aktive Form überführt. Durch die Kristallisation der C-terminalen ACS-Domäne wurden hochaufgelöste Strukturen erzeugt, welche eine Diskussion der strukturellen Details des aktiven Zentrums ermöglichen. / Several anaerobic microorganisms, including acetogenic bacteria, sulfate-reducing bacteria and methanogenic archaea operate the reductive acetyl-CoA pathway for autotrophic carbon fixation or to gain energy. The last steps of acetyl-CoA formation rely on three enzymes, the corrinoid-iron/sulfur-protein (CoFeSP), the methyltetrahydrofolate:CoFeSP methyltransferase (MeTr) and the acetyl-CoA synthase/CO dehydrogenase complex (ACS/CODH). Substrate binding to MeTr was investigated by thermodynamic and kinetic meassurements. MeTHF binds slightly stronger than the demethylated product tetrahydrofolate (THF), likely following a simple one-step-binding mechanism. Substrate binding to MeTr is coupled to proton uptake. A H-N5(+)-CH3-transition state of MeTHF could be stabilized by an alternative conformation of Asn200. Asp44 and Asp76 form a functional dyade in substrate binding but can be excluded as proton donors for substrate activation. The crystal structure of CoFeSP was solved completely, including the previously disordered N-terminal [4Fe4S]-cluster binding domain. The expected conformational change of the corrinoid binding domain was characterized by analyzing the interaction between CoFeSP and its reductive activator (RACo). An approach of the labeled CoFeSP positions in the CoFeSP:RACo complex was observed by Förster resonance energy transfer. Based on the corresponding fluorescence signal, the kinetics of complex formation were meassured in solution. Pulsed electron double resonance also showed that the labeled positions approach upon complex formation. Full-length ACS was purified in the apo state. A reconstitution of the A-cluster with NiCl2 resulted in active enzyme. Different crystal structures of the isolated C-terminal domain of ACS were solved at high resolution. Therefore, structural details of the active site could be discussed.
2

Vergleichende Untersuchungen zur Struktur, Funktion und Regulation der fünf c-di-GMP-spezifischen CSS-Domänen- Phosphodiesterasen in Escherichia coli

Lorkowski, Martin 05 January 2021 (has links)
Die fünf CSS-Domänen Phosphodiesterasen aus Escherichia coli K12 (E. coli) gehören zu den weit verbreiteten c-di-GMP-PDEs. Ein Vertreter, PdeC, wurde bereits von Herbst et al. (2018) charakterisiert. Durch DsbA/DsbB geförderte Disulfidbrückenbindung (DSB) in der CSS-Domäne von PdeC wird die PDE-Aktivität des Proteins gehemmt. Gegenteilig ist die freie Thiolform, in Abhängigkeit von der TM2 als Dimerisierungs-Domäne, enzymatisch aktiver. Diese Form wird von den periplasmatischen Proteasen DegP und DegQ prozessiert. Ein irreversibel aktiviertes TM2+EAL-Fragment wird generiert, dass durch weitere Proteolyse langsam entfernt wird. Die Reduktion der CSS-Domäne von PdeC zur der freien Thiolform stimuliert die PDE-Aktivität der EAL-Domäne in vitro. Zusammen mit den Daten von Herbst et al. (2018) wird die CSS-Domäne in dieser Arbeit als eine neue sensorische Domäne charakterisiert, dessen Aktivität durch einen DSB/Thiol-Schaltmechanismus reguliert wird. Alle fünf CSS-Domänen-PDEs von E. coli K12 weisen eine ähnliche Domänenarchitektur auf, jedoch unterscheiden sich Redox-Biochemie, Proteolyse und PDE-Aktivität innerhalb dieser Proteinfamilie. Auf Basis der PDE-Aktivität von Nicht-DSB-Varianten wurden PdeB, PdeC und PdeG als aktivierbare (Reduktion steigert die PDE-Aktivität) und PdeD und PdeN als nicht aktivierbare (Reduktion inaktiviert PDEs) charakterisiert. Ein weiterer Vertreter de CSS-Domänen PDEs, PdeN, scheint nicht über die Ausbildung einer DSB in der CSS-Domäne reguliert und aktiviert zu werden. Nach erfolgter Proteinbiosynthese wird die Proteinkonzentration vielmehr über den N-Terminus reguliert, wobei saure Wachstumsbedingungen das Protein maßgeblich induzieren und die Aktivität erhöhen. Wird das Protein erfolgreich in die Membran eingelagert, kann es bedingt durch die strukturelle DSB seine PDE-Aktivität entfalten und die Biofilmmatrixproduktion maßgeblich beeinflussen. / The five CSS domain phosphodiesterases from Escherichia coli K12 (E. coli) belong to the widespread group of c-di-GMP PDEs. One representative, PdeC, has already been characterized by Herbst et al. (2018). DsbA/DsbB promoted disulfide bond (DSB) formation in the CSS domain of PdeC inhibits the PDE activity of the protein. On the contrary, the free thiol form is more enzymatically active, depending on the TM2 as the dimerization domain. This form is processed by the periplasmic proteases DegP and DegQ. An irreversibly activated TM2 + EAL fragment is generated that is slowly removed by further proteolysis. The reduction of the CSS domain of PdeC to the free thiol form stimulates the PDE activity of the EAL domain in vitro. Together with the data from Herbst et al. (2018) the CSS domain is characterized as a new sensory domain whose activity is regulated by a DSB / thiol switch mechanism. All five E. coli K12 CSS domain PDEs share a similar domain architecture, but redox biochemistry, proteolysis, and PDE activity differ within the protein family. On the basis of the PDE activity of non-DSB variants, PdeB, PdeC and PdeG were characterized as activatable (reduction increases PDE activity) and PdeD and PdeN as non-activatable (reduction inactivated PDE activity). Another representative of the CSS domain PDEs, PdeN, does not seem to be regulated and activated by forming a DSB in the CSS domain. After protein biosynthesis the protein concentration is rather regulated via the N-terminus, with acidic growth conditions significantly inducing the protein and increasing its activity. If the protein is successfully inserted in the membrane, it can develop its PDE activity due to the structural DSB and influence the biofilm matrix production significantly.

Page generated in 0.0183 seconds