11 |
Studying nonlinear optical properties of the plant light-harvesting protein LHCIISchubert, Axel 11 May 2004 (has links)
Ultraschnelle Energietransferprozesse zwischen den Anregungszuständen organischer Pigmentmoleküle in photosynthetischen Lichtsammelkomplexen gehören zu den schnellsten bisher untersuchten biologischen Ereignissen. Diese Vorgänge wurden insbesondere auch für den Haupt-Antennenkomplex der höheren Pflanzen (LHCII) beobachtet, der mehr als die Hälfte des pflanzlichen Chlorophylls (Chl) bindet (5 Chl b und 7 Chl a pro Monomer). Offenbar ist dieser Pigment-Protein-Komplex entscheidend für Regulationsmechanismen verantwortlich, die eine schnelle Adaptation des Photosyntheseapparats an wechselnde Licht- bedingungen ermöglichen. Die Struktur von LHCII ist mit einer Auflösung von 3.4 Å bekannt und erlaubt (im Prinzip) die Berechnung des Anregungsenergietransfers auf Basis eines Förster-Mechanismus. In diesem Zusammenhang gibt es jedoch noch zahlreiche ungeklärte Fragen, die vor allem die Orientierung der Pigmente zueinander sowie deren mögliche starke (exzitonische) Wechselwirkung betreffen. Allerdings sind konventionelle spektroskopische Methoden nicht geeignet, diese Merkmale ausreichend aufzuklären. Aus diesem Grund wird in dieser Arbeit untersucht, inwieweit neuere laserspektroskopische Methoden wie die nichtlineare Polarisationsspektroskopie in der Frequenzdomäne (NLPF) zur Ermittlung unbekannter Parameter beitragen können. Anfänglich ergaben sich besonders Fragen der Anwendbarkeit der NLPF auf solche hoch- komplexen Untersuchungsobjekte sowie der Signifikanz eventuell erzielbarer Ergebnisse. Aufbauend auf einer parallel verfaßten Dissertation zu theoretischen Aspekten der NLPF- Methode [1] wurde daher ein vereinfachtes System modelliert, das die Heterogenität der individuellen Chl(e) im LHCII widerspiegelt. Die gewonnenen Resultate ließen vermuten, daß die reine Simulation von NLPF-Spektren nicht ausreicht, um eindeutige Aussagen über die Molekülparameter zu gewinnen. Um den benötigten zusätzlichen Erkenntnisgewinn zu erreichen, wurden daher Paralleluntersuchungen mit anderen laserspektroskopischen Methoden (nichtlineare Absorption mit fs-Pulsen, intensitätsabhängige NLPF, Einzelmolekülspektroskopie, Tieftemperatur-NLPF) sowie mit in vitro rekonstituierten Protein-Mutanten durchgeführt. Als Ergebnis konnte die Subbstruktur der Qy- Absorptionsbande der ersten angeregten Zustände der Chl(e) für LHCII ausreichend beschrieben werden. Darüber hinaus ergaben sich Aussagen zu exzitonischen Wechselwirkungen zwischen bestimmten Chl(en), die unter anderem Einfluß auf das Energie- transferverhalten haben. Diese zusätzlichen Untersuchungen erlaubten letztendlich eine Modellierung der bei Raum- temperatur an LHCII gemessenen NLPF-Spektren. Neben dem dabei implizit gewonnenen Verständnis der nichtlinearen optischen Eigenschaften im Bereich der Qy-Absorption ließen sich so Aussagen über bestimmte Modellparameter, besonders über die Orientierung von Übergangsdipolmomenten, ableiten. Abschließend wurde die Auswirkung der Erkenntnisse auf das Verständnis der Struktur-Funktionsbeziehungen für intra- und inter-komplexen Energietransfer erläutert. / Ultra-fast excitation energy transfer (EET) between excited states of organic pigment molecules in photosynthetic antenna complexes belongs to the fastest observed biological processes. Such EET phenomena has been studied to a large extent for the main light- harvesting complex of the higher plants (LHCII), which appears to play an exceptional role for the regulatory function (i.e. light adaptation) of the plant photosynthetic apparatus. The structure of this pigment-protein complex harboring more than 50 % of the total chlorophyll (Chl) content is known with 3.4 Å resolution and reveals the binding sites of 5 Chl b and 7 Chl a per monomeric unit. Based on this structure analysis, EET calculations are (in principle) available on the molecular level under the assumption of Förster-type transfer. However, several molecular features like mutual pigment orientations and electronic interactions between their transition dipoles are still rather uncertain. Since conventional spectroscopic techniques can hardly reveal the corresponding parameters, this work was aimed at the evaluation of newly introduced laser spectroscopic techniques with respect to these questions. In the beginning, suitability and significance of the method when applied to highly complicated structures like pigment-protein complexes were studied by modeling heterogeneous, LHCII-like absorption systems in NLPF experiments. Based on recent improvements in the NLPF theory by a parallel theoretical investigation [1], these simulations clarified the sensitivity of the NLPF method on numerous physical parameters. As a major consequence, unambiguous evaluations of NLPF measurements appear to require substantial additional information about the investigated system. Accordingly, several supplementary methods like nonlinear absorption (using fs-pulses), intensity-dependent NLPF, single- molecule spectroscopy, and NLPF at low temperatures were employed. These investigations revealed unique information about excitonic interaction between certain Chl(s), including implications for the overall EET scheme. The sub-structure model for the Qy-absorption region of LHCII was further essentially improved by the analysis of reconstituted proteins with selectively modified Chl binding residues in the amino-acid sequence. The sum of all complementary investigations allowed finally the evaluation of room temperature NLPF measurements of trimeric LHCII. Due to the unique selectivity of the spectra to individual transition-dipole directions, several orientation parameters have been obtained. Under this point of view, the NLPF method has indeed revealed a high potential as compared to conventional techniques like circular dichroism spectroscopy. Moreover, the understanding of nonlinear phenomena in the Qy-absorption region of LHCII as a consequence of molecular interaction provides further knowledge for the application of other nonlinear optical experiments. Concluding, implications of the obtained results for the structure-function relationship of intra- and inter-complex EET were elucidated.
|
12 |
Untersuchungen über Konsequenzen einer deregulierten Chlorophyllsynthese und funktionelle Analyse des YCF54/LCAA-Proteins in Cyanobakterien und PflanzenGirke, Annabel 18 August 2015 (has links)
Die Biosynthese von Chlorophyll ist komplex und umfasst mehr als ein Dutzend enzymatische Schritte. Es ist nur allzu selbstverständlich, dass eine Deregulation der Chlorophyllsynthese globale Effekte auf die Zelle hat. Um diese Konsequenzen näher zu beleuchten, wurden Arabidopsis thaliana Pflanzen mit chemisch induzierter Deaktivierung von zwei Chlorophyllbiosynthesegenen (CHLH bzw. CHL27) erzeugt sowie photoautotophe Zellsuspensionskulturen von Arabidopsis thaliana hinsichtlich kurzzeitig induzierter Signalprozesse untersucht. Die Resultate verdeutlichen, dass durch Fehlregulationen innerhalb der Chlorophyllbiosynthese erzeugte reaktive Sauerstoffspezies die Transkriptionskontrolle kernkodierter Gene beeinflussen. Die Untersuchung eines enzymatischen Schrittes der Chlorophyllbiosynthese trat in dieser Arbeit in den Hauptfokus: Die Bildung des fünften, isozyklischen Ringes im Chlorophyllmolekül, katalysiert durch das bisher unzureichend erforschte Enzym Mg-Protoporphyrin-IX-monomethylester-Cyclase (Cyclase). Anhand von transgenen Cyanobakterien und Pflanzen sollte das noch unbekannte Gen ycf54 hinsichtlich seiner physiologischen Funktion in dem Cyclase-Enzymschritt analysiert werden. Das Fehlen von Ycf54 in Synechocystis sp. PCC6803 bzw. des homologen LCAA-Proteins in Nicotiana tabacum und Arabidopsis thaliana führt zu starken Cyclase-Substrat-Akkumulationen, verringerten Chlorophyllgehalten und reduzierten Ycf59- bzw. CHL27-Proteingehalten. Ein Mangel von Ycf54/LCAA beeinträchtigt daher die Funktionalität des Cyclase-Komplexes und scheint sich zudem interessanterweise auch auf die Stabilität photosynthetischer Antennenkomplexe auszuwirken. Mittels Pulldown-Assays konnte für Arabidopsis thaliana die direkte physikalische Interaktion zwischen LCAA und CHL27 bestätigt werden. Darüber hinaus sind erste Hinweise für die Ferredoxin-NADP-Reduktase als potenziellen Interaktionspartner gezeigt. / Synthesis of chlorophyll is a complex metabolic process and encompasses more than a dozen enzymatic reactions. It is self-evident that a deregulation of chlorophyll biosynthesis evokes global cellular impacts. To elucidate these consequences Arabidopsis thaliana plants with chemically inducible deactivation of two chlorophyll biosynthesis genes (CHLH and CHL27, respectively) were generated and photoautotrophic cell suspension cultures of Arabidopsis thaliana were used for short induced signal processes. The results illustrate that reactive oxygen species provoked by a deregulated chlorophyll synthesis affect the control of transcription of nuclear genes. The investigation of one enzymatic step of chlorophyll biosynthesis was placed as main focus: The formation of the isocyclic ring of the chlorophyll molecule catalyzed by the Mg protoporphyrin IX monomethyl ester cyclase (short: cyclase), an enzyme which is not fully investigated so far. The still unknown hypothetical chloroplast open reading frame (ycf) ycf54 should be analyzed concerning it’s physiological function in the enzymatic step of the cyclase using transgenic cyanobacteria and plants. Lack of Ycf54 in Synechocystis sp. PCC6803 and the homologous LCAA protein in Nicotiana tabacum and Arabidopsis thaliana, respectively, leads to chlorophyll deficiency, a strong accumulation of the cyclase substrate and reduced protein contents of Ycf59 and CHL27, respectively. A deficit of Ycf54/LCAA impairs the functionality of the cyclase complex and also might compromise the stability of photosynthetic antenna complexes. Using pull-down assays a direct physical interaction between LCAA and CHL27 could be confirmed. Additionally, first evidences for ferredoxin NADP reductase as a potential interaction partner was given.
|
Page generated in 0.024 seconds