• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DURHAM : a word sense disambiguation system

Hawkins, Paul Martin January 1999 (has links)
Ever since the 1950's when Machine Translation first began to be developed, word sense disambiguation (WSD) has been considered a problem to developers. In more recent times, all NLP tasks which are sensitive to lexical semantics potentially benefit from WSD although to what extent is largely unknown. The thesis presents a novel approach to the task of WSD on a large scale. In particular a novel knowledge source is presented named contextual information. This knowledge source adopts a sub-symbolic training mechanism to learn information from the context of a sentence which is able to aid disambiguation. The system also takes advantage of frequency information and these two knowledge sources are combined. The system is trained and tested on SEMCOR. A novel disambiguation algorithm is also developed. The algorithm must tackle the problem of a large possible number of sense combinations in a sentence. The algorithm presented aims to make an appropriate choice between accuracy and efficiency. This is performed by directing the search at a word level. The performance achieved on SEMCOR is reported and an analysis of the various components of the system is performed. The results achieved on this test data are pleasing, but are difficult to compare with most of the other work carried out in the field. For this reason the system took part in the SENSEVAL evaluation which provided an excellent opportunity to extensively compare WSD systems. SENSEVAL is a small scale WSD evaluation using the HECTOR lexicon. Despite this, few adaptations to the system were required. The performance of the system on the SENSEVAL task are reported and have also been presented in [Hawkins, 2000].
2

Distribution av programvara i en stor organisation : fallstudie från landstinget i Östergötland

Ljungstedt, Stefan January 2002 (has links)
No description available.
3

Distribution av programvara i en stor organisation : fallstudie från landstinget i Östergötland

Ljungstedt, Stefan January 2002 (has links)
No description available.
4

A Feature Structure Approach for Disambiguating Preposition Senses

Baglodi, Venkatesh 01 January 2009 (has links)
Word Sense Disambiguation (WSD) continues to be an open research problem in spite of recent advances in the NLP field, especially in machine learning. WSD for open-class words is well understood. However, WSD for closed class structural words (such as prepositions) is not so well resolved, and their role in frame semantics seems to be a relatively unknown area. This research uses a new method to disambiguate preposition senses by using a combined lookup from FrameNet and TPP databases. Motivated by recent work by Popescu, Tonelli, & Pianta (2007), it extends the concept to provide a deterministic WSD of prepositions using the lexical information drawn from the sentences in a local context. While the primary goal of the research is to disambiguate preposition sense, the approach also assigns frames and roles to different sentence elements. The use of prepositions for frame and role assignment seems to be a largely unexplored area which could provide a new dimension to research in lexical semantics.
5

Construction Industry Hesitation in Accepting Wearable Sensing Devices to Enhance Worker

Fugate, Harrison M 01 June 2022 (has links) (PDF)
The construction industry is one of the most unsafe industries for workers in the United States. Advancements in wearable technology have been proven to create a safer construction environment. Despite the availability of these devices, use within the construction industry remains low. The objective of this research is to identify and analyze the causes behind the reluctance of the construction industry to implement two specific wearable safety devices, a biometric sensor, and a location tracking system. Device acceptance was analyzed from the perspective of the user (construction field labor) and company decision makers (construction managers). A modified unified theory of acceptance and use of technology (UTAUT) model was developed specific to barriers commonly found within technology adoption in the construction industry including: perceived performance expectancy, perceived effort expectancy, openness to data utilization, social influence, data security, and facilitating conditions. A structured questionnaire was designed to test for association between the mentioned constructs and either behavioral intention or actual use. The questionnaire went through an expert review process, and a pilot study was conducted prior to being distributed to industry. Once all data was received Pearson chi-squared analysis was used to test for association between the constructs. A minority (46%) of labor respondents would not agree to voluntarily use the biometric wearable sensing device. Constructs associated with this finding included perceived performance expectancy, perceived effort expectancy, and social influence. A majority (59%) of labor respondents would not agree to voluntarily use the location tracking wearable sensing device. Constructs associated with this finding included perceived performance expectancy, social influence, and data security. A majority (56%) of management respondents would not implement the biometric wearable sensing device. Constructs found to be associated with this finding included perceived performance expectancy, openness to data utilization, and social influence of the client. A supermajority (68%) of management respondents would not implement the location tracking wearable sensing device. Constructs found to be associated with this finding include perceived performance expectancy, perceived effort expectancy, openness to data utilization, social influence, and data security. This study will aid in the successful implementation of wearable sensing devices within the construction industry. Findings from this study can be used to aid those hoping to implement wearable sensing devices by identifying causes of wearable sensing device rejection. The results of this study can be used by both project managers and health and safety professionals to aid in device acceptance by field labor, and by those whose goal is to increase device use among construction firms.
6

Word-sense disambiguation in biomedical ontologies

Alexopoulou, Dimitra 12 January 2011 (has links) (PDF)
With the ever increase in biomedical literature, text-mining has emerged as an important technology to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines) and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been developed. Knowledge-based methods that make use of the WordNet computational lexicon have also been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve the problem and none exploit inference over ontologies and the use of metadata from publications. This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches for word sense disambiguation that use ontologies and metadata. The "Closest Sense" method assumes that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring terms in the document to one of these senses. The "Term Cooc" method defines a log-odds ratio for co-occurring terms including inferred co-occurrences. The "MetaData" approach trains a classifier on metadata; it does not require any ontology, but requires training data, which the other methods do not. These approaches are compared to each other when applied to a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach achieves on average 80% success rate. Furthermore, the thesis showcases applications ranging from ontology design to semantic search where WSD is important.
7

Word-sense disambiguation in biomedical ontologies

Alexopoulou, Dimitra 11 June 2010 (has links)
With the ever increase in biomedical literature, text-mining has emerged as an important technology to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines) and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been developed. Knowledge-based methods that make use of the WordNet computational lexicon have also been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve the problem and none exploit inference over ontologies and the use of metadata from publications. This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches for word sense disambiguation that use ontologies and metadata. The "Closest Sense" method assumes that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring terms in the document to one of these senses. The "Term Cooc" method defines a log-odds ratio for co-occurring terms including inferred co-occurrences. The "MetaData" approach trains a classifier on metadata; it does not require any ontology, but requires training data, which the other methods do not. These approaches are compared to each other when applied to a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach achieves on average 80% success rate. Furthermore, the thesis showcases applications ranging from ontology design to semantic search where WSD is important.
8

Una aproximación a la desambiguación del sentido de las palabras basada en clases semánticas y aprendizaje automático

Izquierdo Beviá, Rubén 17 September 2010 (has links)
No description available.
9

The Rumble in the Disambiguation Jungle : Towards the comparison of a traditional word sense disambiguation system with a novel paraphrasing system

Smith, Kelly January 2011 (has links)
Word sense disambiguation (WSD) is the process of computationally identifying and labeling poly- semous words in context with their correct meaning, known as a sense. WSD is riddled with various obstacles that must be overcome in order to reach its full potential. One of these problems is the aspect of the representation of word meaning. Traditional WSD algorithms make the assumption that a word in a given context has only one meaning and therfore can return only one discrete sense. On the other hand, a novel approach is that a given word can have multiple senses. Studies on graded word sense assignment (Erk et al., 2009) as well as in cognitive science (Hampton, 2007; Murphy, 2002) support this theory. It has therefore been adopted in a novel, paraphrasing system which performs word sense disambiguation by returning a probability distribution over potential paraphrases (in this case synonyms) of a given word. However, it is unknown how well this type of algorithm fares against the traditional one. The current study thus examines if and how it is possible to make a comparison of the two. A method of comparison is evaluated and subsequently rejected. Reasons for this as well as suggestions for a fair and accurate comparison are presented.
10

Translation of keywords between English and Swedish / Översättning av nyckelord mellan engelska och svenska

Ahmady, Tobias, Klein Rosmar, Sander January 2014 (has links)
In this project, we have investigated how to perform rule-based machine translation of sets of keywords between two languages. The goal was to translate an input set, which contains one or more keywords in a source language, to a corresponding set of keywords, with the same number of elements, in the target language. However, some words in the source language may have several senses and may be translated to several, or no, words in the target language. If ambiguous translations occur, the best translation of the keyword should be chosen with respect to the context. In traditional machine translation, a word's context is determined by a phrase or sentences where the word occurs. In this project, the set of keywords represents the context. By investigating traditional approaches to machine translation (MT), we designed and described models for the specific purpose of keyword- translation. We have proposed a solution, based on direct translation for translating keywords between English and Swedish. In the proposed solu- tion, we also introduced a simple graph-based model for solving ambigu- ous translations. / I detta projekt har vi undersökt hur man utför regelbaserad maskinöver- sättning av nyckelord mellan två språk. Målet var att översätta en given mängd med ett eller flera nyckelord på ett källspråk till en motsvarande, lika stor mängd nyckelord på målspråket. Vissa ord i källspråket kan dock ha flera betydelser och kan översättas till flera, eller inga, ord på målsprå- ket. Om tvetydiga översättningar uppstår ska nyckelordets bästa över- sättning väljas med hänsyn till sammanhanget. I traditionell maskinö- versättning bestäms ett ords sammanhang av frasen eller meningen som det befinner sig i. I det här projektet representerar den givna mängden nyckelord sammanhanget. Genom att undersöka traditionella tillvägagångssätt för maskinöversätt- ning har vi designat och beskrivit modeller specifikt för översättning av nyckelord. Vi har presenterat en direkt maskinöversättningslösning av nyckelord mellan engelska och svenska där vi introducerat en enkel graf- baserad modell för tvetydiga översättningar.

Page generated in 0.031 seconds