• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation der endothelialen NO-Synthase unter Hypoxie und proinflammatorischer Stimulation in pulmonal-arteriellen Endothelzellen

Borrmann, Steffen 09 October 1998 (has links)
No description available.
2

Charakterisierung der frühen adaptiven zerebralen Arteriogenese

Hillmeister, Philipp 19 January 2010 (has links)
Arteriogenese bezeichnet das adaptive Wachstum von präexistenten kollateralen Arterien. Im Falle eines Arterienverschlusses ist Arteriogenese der endogen effizienteste Kompensationsmechanismus, um das Hypoperfusionsgebiet mit ausreichend Blut zu versorgen (Biologischer Bypasses). In dieser Arbeit wurde das frühe Wachstum von Kollateralgefäßen im Gehirn im ersten Modell für zerebrale Arteriogenese, dem 3-VO Modell (3-vessel occlusion), in der Ratte charakterisiert. (I) Die Untersuchung am nicht-ischämischen 3-VO Hypoperfusionsmodell zeigten, dass 7 Tage nach 3-VO die Arteria cerebri posterior (PCA) signifikant im Diameter anwächst. Histologische Untersuchungen konnten ein vermehrtes Zellwachstum in der PCA und das Einwandern von Makrophagen in den perivaskulären Bereich (24 Stunden und 3 Tage post 3-VO) darstellen und eine Aktivierung des Endothels 3 Tage nach 3-VO wurde mittels Rasterelektronenmikroskopie identifizieren. (II) Für eine genaue Anaylse des globalen Genexpressionsprofils der zerebralen Arteriogense wurde die wachsende PCA selektiv aus dem Gehirn entnommen und ein Genexpressionsprofil für die frühe zerebrale Arteriogenese erstellt (164 Gene dereguliert). Eine Unteruschung von biologischen und molekularen Prozessen zeigte, dass eine Vielzahl der deregulierten Gene in Zellproliferation und Inflammation involviert sind. Die Expression der Protease-Inhibitoren Kininogen und TIMP-1 wurde als “Marker” der frühen Arteriogenese in der PCA lokalisiert werden. Zusammenfassend zeigt diese Arbeit erstmals eine Übersicht der biologischen Prozesse in der zerebralen Arteriogenese und eröffnet neue Ideen für eine mögliche therapeutische Strategie. / Arteriogenesis, the adaptive outward growth of pre-existing collateral arteries, is the most efficient endogenous rescue mechanisms in vertebrates against the occlusion of a major artery (biological bypass). Here, collateral growth was induced using the first model for cerebral arteriogenesis, the 3-vessel occlusion (3-VO) rat model. (I) 3-VO resulted in a significant diameter increase within 7 days in the posterior cerebral artery (PCA) and posterior communicating artery (Pcom), classifying the region of interest. Immunhistological staining demonstrated proliferative activation and macrophage invasion, already 24h post 3-VO within the PCA, confirming the arteriogenic phenotype. Furthermore, activation of the PCA endothelium was detected within 3 days post 3-VO by scanning electron microscopy. (II) For analysing the molecular mechanism of cerebral arteriogenesis, collateral tissue from the growing PCA was selectively isolated. Here, 24h post 3-VO 164 genes were detected to be significantly deregulated. Analysis of molecular annotations and networks associated with differentially expressed genes revealed that expression patterns contain gene transcripts predominantly involved in proliferation, inflammation, and migration. Early-phase cerebral arteriogenesis is characterized by protease inhibitor expression and showed that protease inhibitors TIMP-1 and kininogen are molecular markers of early-phase cerebral arteriogenesis. In summary, this work characterizes morphological features and genomic profiles of growing collaterals in the brain and develops novel ideas for a therapeutic stimulation of arteriogenesis.
3

The roles of RABEP2 and RABEP1 in vascular biology

Fechner, Ines 12 July 2022 (has links)
Große Arterien spalten sich wiederholt und bilden so arterielle Bäume. Die Menge des Blutflusses bestimmt, welche Teilgefäße stabilisiert oder entfernt werden, weshalb arterielle Bäume normalerweise physisch voneinander getrennt sind. Manchmal formen sich aber kleine Gefäßverbindungen zwischen arteriellen Bäumen, Kollaterale, und bilden eine bedeutende Ausnahme vom Konzept der blutflussvermittelten Netzwerkoptimisierung. Die Funktion von Kollateralen und Mechanismen, die sie stabilisieren sind bisher nicht erforscht. Kollaterale sind von medizinischem Belang, da sie im Falle einer Gefäßverstopfung als natürlicher Bypass fungieren und so eine Ischämie effizient mildern. Ziel der vorliegenden Arbeit war, das grundlegende Verständnis über die Bildung und Stabilisierung von Kollateralen zu verbessern, indem die generelle Rolle von rabep2 während der Blutgefäßentwicklung untersucht wurde, einem Gen welches kürzlich mit unterschiedlicher Kollateraldichte und Schwere von Schlaganfällen bei Mäusen assoziiert wurde. In meinen Studien untersuchte ich auch RABEP1, ein Protein welches hohe strukturelle Ähnlichkeit mit RABEP2 aufweist, um zu verstehen ob beide Proteine ähnliche Funktionen in der Blutgefäßentwicklung haben. Ich nutzte Knock-downs von rabep1 und rabep2 im Zebrafisch und in HUVEC, um die Rollen der Gene in der Entwicklung und Stabilisierung vorhandener Gefäße zu untersuchen. Dabei fand ich heraus, dass beide Proteine für die ordnungsgemäße Bildung und den Erhalt von Blutgefäßen im Zebrafisch essenziell sind. Mithilfe des knock-down in HUVEC analysierte ich, welche zellulären Mechanismen des Endothels durch RABEP1 und RABEP2 kontrolliert werden und so die schweren vaskulären Defekte im Zebrafisch bedingen. Zusammenfassend zeigt meine Arbeit, dass ein penibles Gleichgewicht zwischen RABEP1 und RABEP2 Expression notwendig ist, um eine ordnungsgemäße Funktion der Endothelzellen und eine korrekte Entwicklung und Erhaltung des Blutgefäßsystems zu gewährleisten. / Major arteries form individual arterial trees by branching repeatedly. Vascular adaption through blood flow-mediated network remodelling removes vessel segments with poor flow, leading to physical separation of individual arterial trees. Sometimes small vessel connections between arterial trees, called collaterals, are formed and stabilized. Collaterals normally receive low levels of blood flow and therefore represent notable exceptions to the concept of blood-flow mediated network optimisation. The function of collaterals, and mechanisms that form and stabilize them, are not yet understood. Collaterals are of major clinical importance, as they can rapidly enlarge its diameter and act as natural bypass in case of occlusion, thereby efficiently temper the severity of ischemia. The present work aimed to advance the fundamental understanding of how collateral vessels are formed and stabilized, by investigating the role of rabep2 on the developing vasculature, a gene that has recently been associated with differences in collateral density and stroke severity in mice. In my approaches, I included RABEP1, which shares high structural similarity to RABEP2, to investigate whether both proteins share similar functions. I used knock-downs of rabep1 and rabep2, both in zebrafish and Human Umbilical Vein Endothelial Cell (HUVEC), to investigate their specific role during development and maintenance of blood vessels. With these approaches, I discovered that both proteins are essential for proper establishment and maintenance of the zebrafish vasculature. The knock-down in HUVEC helped me to dissect cellular mechanisms of endothelial cells in which RABEP1 and RABEP2 play crucial roles, in order to gain a deeper understanding of the mechanisms causing the severe defects in zebrafish vasculature. Together, I showed that a tight equilibrium of RABEP1 and RABEP2 expression is needed for proper function of endothelial cells and proper development and maintenance of the vasculature.

Page generated in 0.0167 seconds