Spelling suggestions: "subject:"waste class"" "subject:"taste class""
1 |
Effects of Waste Glass Addition on the Properties of Fired Clay BrickFederico, Lisa 06 1900 (has links)
The optimization of the production of fired clay brick is essential in order to maintain a sustainable industry in Ontario. While there exists areas for improvement of the properties of bricks used in severe climates, concerns including non-renewable resource depletion, increasing energy costs, and waste management have become increasingly important in Canadian and global industries. One method to address these concerns is the use of waste additives as fluxing agents in bricks. While a fluxing agent reduces the firing temperature required for sintering of the brick and improves properties, the use of a waste additive can decrease the dependency of the industry or non-renewable resources such as mined clay or crushed shale. Waste additives can improve strength durability, and absorptive properties, while decreasing firing temperature, and diverting waste from landfills. A testing program was developed to determine the effects of several variables in brick production, including extrusion and firing, and to investigate the effect of the addition of non-recycled waste glass in the properties of fired clay brick. The addition was varied in the particle size of the waste glass and the percentage by mass of additive. The effects of waste glass addition were determined in terms of absorption, strength, and freeze-thaw durability of the individual specimens. Microstructure was also investigated using SEM images and mercury intrusion porosimetry to determine the effect on pore structure and vitrified matrix of the bricks. The results of the testing program determined an optimal addition of waste glass, and the expected effects of the implementation of this addition to the production of fired clay brick in an industrial setting. / Thesis / Master of Applied Science (MASc)
|
2 |
Processamento e propriedades de compósitos de poliamida 6.6 reforçada com partículas de vidro reciclado. / Processing and properties of composites polyamide 6.6 with waste glass particles.Factori, Irina Marinho 08 October 2009 (has links)
A poliamida 6.6 é um dos mais importantes membros da família das poliamidas, principalmente pelas excelentes propriedades de engenharia, como desempenho mecânico e térmico. A sua área de aplicação é ampliada pela adição de cargas inorgânicas. Dentre estas cargas podemos destacar as fibras de vidro, talco, wollastonita e micro esferas de vidro, cargas estas industrialmente conhecidas. Por outro lado, partículas de vidro reciclado provenientes de descarte nunca foram estudadas como reforço de poliamida 6.6, em especial as partículas menores, que são rejeitadas na reciclagem pela indústria do vidro por apresentarem dificuldade de transporte para os fornos, podendo depositar-se nos refratários (fenômeno de arraste), aumentando sua taxa de corrosão, assim reduzindo a vida útil dos fornos. Além disso, essas partículas têm formato irregular. Desse modo, compósitos de poliamida 6.6 reforçados com porcentagens variadas de vidro reciclado e cargas usualmente empregadas pela indústria foram processados em laboratório, com o auxílio de uma extrusora dupla-rosca e as amostras avaliadas foram obtidas por injeção. As seguintes propriedades dos compósitos foram avaliadas: resistência à tração, alongamento na ruptura, módulo na tração, resistência ao impacto Charpy sem entalhe, estabilidade dimensional e microscopia eletrônica de varredura. Os resultados indicam que é possível utilizar-se partículas de vidro reciclado numa matriz de PA-6.6 uma vez que as propriedades do compósito final são compatíveis com aquelas proporcionadas pelas cargas comerciais usualmente empregadas. / Polyamide 6.6 is one of the most important members of the polyamide family, mainly for its excellent engineering properties such as good mechanical and thermal performances. Its application area is enlarged by the addition of inorganic fillers. Among these fillers, glass fibers, talc, wollastonite and glass microspheres could be highlighted, which are industrially known fillers. On the other hand, glass particles from glass cullet have never been studied as a polyamide reinforcement, specially the smaller particles, which are rejected by the glass industry because of the carry-over phenomenon, increasing the cost of the smoke washing, as well as the possibility of increasing refractory corrosion, therefore reducing the useful life of the furnaces. Furthermore, these particles present irregular shapes. In this research, polyamide 6.6 composites, reinforced with different percentages of recycled powder glass and other common fillers used by the industry, were processed in laboratory scale with the help of a double screw extruder. Specimens for testing were obtained by injection, and the following composite properties were evaluated: tensile strength, elongation at rupture, elastic modulus, notchless Charpy impact strength, and dimensional stability. The specimens were also observed in a scanning electron microscope. The results indicated that it is possible to use particles of recycled glass in a PA- 6.6 matrix, once the final composite properties are compatible to the ones of composites containing usual commercial fillers.
|
3 |
Processamento e propriedades de compósitos de poliamida 6.6 reforçada com partículas de vidro reciclado. / Processing and properties of composites polyamide 6.6 with waste glass particles.Irina Marinho Factori 08 October 2009 (has links)
A poliamida 6.6 é um dos mais importantes membros da família das poliamidas, principalmente pelas excelentes propriedades de engenharia, como desempenho mecânico e térmico. A sua área de aplicação é ampliada pela adição de cargas inorgânicas. Dentre estas cargas podemos destacar as fibras de vidro, talco, wollastonita e micro esferas de vidro, cargas estas industrialmente conhecidas. Por outro lado, partículas de vidro reciclado provenientes de descarte nunca foram estudadas como reforço de poliamida 6.6, em especial as partículas menores, que são rejeitadas na reciclagem pela indústria do vidro por apresentarem dificuldade de transporte para os fornos, podendo depositar-se nos refratários (fenômeno de arraste), aumentando sua taxa de corrosão, assim reduzindo a vida útil dos fornos. Além disso, essas partículas têm formato irregular. Desse modo, compósitos de poliamida 6.6 reforçados com porcentagens variadas de vidro reciclado e cargas usualmente empregadas pela indústria foram processados em laboratório, com o auxílio de uma extrusora dupla-rosca e as amostras avaliadas foram obtidas por injeção. As seguintes propriedades dos compósitos foram avaliadas: resistência à tração, alongamento na ruptura, módulo na tração, resistência ao impacto Charpy sem entalhe, estabilidade dimensional e microscopia eletrônica de varredura. Os resultados indicam que é possível utilizar-se partículas de vidro reciclado numa matriz de PA-6.6 uma vez que as propriedades do compósito final são compatíveis com aquelas proporcionadas pelas cargas comerciais usualmente empregadas. / Polyamide 6.6 is one of the most important members of the polyamide family, mainly for its excellent engineering properties such as good mechanical and thermal performances. Its application area is enlarged by the addition of inorganic fillers. Among these fillers, glass fibers, talc, wollastonite and glass microspheres could be highlighted, which are industrially known fillers. On the other hand, glass particles from glass cullet have never been studied as a polyamide reinforcement, specially the smaller particles, which are rejected by the glass industry because of the carry-over phenomenon, increasing the cost of the smoke washing, as well as the possibility of increasing refractory corrosion, therefore reducing the useful life of the furnaces. Furthermore, these particles present irregular shapes. In this research, polyamide 6.6 composites, reinforced with different percentages of recycled powder glass and other common fillers used by the industry, were processed in laboratory scale with the help of a double screw extruder. Specimens for testing were obtained by injection, and the following composite properties were evaluated: tensile strength, elongation at rupture, elastic modulus, notchless Charpy impact strength, and dimensional stability. The specimens were also observed in a scanning electron microscope. The results indicated that it is possible to use particles of recycled glass in a PA- 6.6 matrix, once the final composite properties are compatible to the ones of composites containing usual commercial fillers.
|
4 |
WASTE GLASS - A SUPPLEMENTARY CEMENTITIOUS MATERIALFederico, Lisa 10 1900 (has links)
<p>This study investigates the feasibility of using waste glass as a supplementary cementitious material (SCM). By further defining some of the parameters by which waste glass may be incorporated into concrete as a cement replacement, the environmental, economical, and engineering benefits of this material may be realized. Past observations, including the production of alkali silica reaction (ASR) gel, and the lack of pozzolanic reactivity, have limited the acceptance of waste glass as a SCM,</p> <p>Mechanical treatment was used to improve reactivity and provide a particle size at which waste glass performs comparably to ground granulated blast furnace slag and nearly as well as silica fume. At 6.6 µm, the pozzolanic reactivity of waste glass was demonstrated through consumption of Ca(OH)<sub>2</sub> and heat of hydration. Waste glass at a larger particle size (16.5 µm) was as reactive as slag. Use of waste glass at 10% replacement of Portland cement by mass and at a particle size below 100 µm proved useful as a SCM.</p> <p>A relationship between pozzolanic and alkali silica reaction (ASR) was identified with intermediate phases of the reaction present. Calcium silicate hydrates (C-S-H) from the pozzolanic reaction have a Ca/Si ratio of 1.5-2. ASR products generally have a Ca/Si ratio of 0.01-1. The products observed with agglomeration of glass particles had a Ca/Si ratio from 0.5-2. The affects of silica concentration and alkalinity of the solution on the reaction products were explored.</p> <p>A reaction rim was identified around glass agglomerates where fluorescence was observed. The results indicate that ASR can be induced even in low alkalinity cement, and the rate of reaction influences both the characteristics and composition of the reaction product.</p> / Doctor of Philosophy (PhD)
|
5 |
Model upotrebe otpadne staklene ambalaže kao sekundarne sirovine u proizvodnji blokova od gline / Model of waste glass containers using as secondary raw material in clay blocks productionMirosavljević Zorica 15 March 2019 (has links)
<p>Istraživanje u okviru doktorske disertacije obuhvata analizu mogućnosti<br />primene reciklaže otpadnog ambalažnog stakla radi dobijanja novog<br />proizvoda. Sa ciljem iznalaženja potencijalnog rešenja za postojeći problem<br />u oblasti upravljanja otpadnom staklenom ambalažom u Srbiji i načina za<br />poboljšanje održivosti u oblasti industrijske proizvodnje, testirana je<br />upotreba drobljenog otpadnog stakla u formi praha, kao sekundarne sirovine<br />u proizvodnji blokova od gline u ciglani. U skladu sa dobijenim<br />eksperimentalnim rezultatima i zaključkom da je 30% optimalna masena<br />količina staklenog praha koja može da se meša sa glinom kod praktične<br />proizvodnje blokova dobrog kvaliteta, razvijen je model, baziran na podacima<br />koji se odnose na konkretan primer. Rezultati modela u okviru analize<br />uticaja procesa proizvodnje blokova sa staklenim reciklatom na životnu<br />sredinu, kao i rezultati analize uticaja na cenu proizvodnje blokova<br />upotrebom staklenog reciklata, predstavljaju značajan doprinos kompletnom<br />sprovedenom istraživanju i usmeravaju na dalji tok istraživanja u oblasti<br />upotrebe otpada kao resursa u industrijskoj proizvodnji.</p> / <p>The research within doctoral dissertation includes a possibility analysis of applying<br />waste glass containers recycling in the production of new product. In order to find a<br />potential solution for the existing problem in the waste glass container management<br />in Serbia and to find a way to improve sustainability in the field of industrial<br />production, the use of waste glass cullet in powder form as a secondary raw material<br />in the clay block production was tested. In accordance with the obtained<br />experimental results and the conclusion that 30 wt. % is the optimal glass cullet<br />amount which can be mixed with clay in the practical production of good quality<br />blocks, a model, based on data related to the concrete example, has been developed.<br />The results of environmental impact assessment of clay/glass blocks production and<br />its costs, represent a significant contribution for complete research and focus on a<br />further research course in the field of waste utilization as a resource in industrial<br />production.</p>
|
6 |
Cristallisation de fontes verrières d’intérêt nucléaire en présence d’un gradient thermique : application aux auto-creusets produits en creuset froid / Crystallization of nuclear glass under a thermal gradient applied to the self-crucible produced in the skull melting processDelattre, Olivier 25 October 2013 (has links)
Dans le cadre de la vitrification des déchets nucléaires de haute activité à vie longue, un nouveau procédé a été mis en service à l’usine de La Hague en 2010 : le procédé creuset froid. Dans ce procédé, des gradients thermiques apparaissent au sein du bain de verre. Celui-ci forme une couche solide au contact de la paroi froide, appelée « auto-creuset ». Dans cette zone, le verre est soumis à des températures où il peut potentiellement cristalliser. L’objectif de ce travail était de déterminer la microstructure de cet auto-creuset en précisant les zones de cristallisation. Parallèlement, il s’agissait d’évaluer l’impact du gradient thermique sur la cristallisation des verres considérés. La cristallisation de deux verres d’intérêt nucléaire a donc été étudiée à l’aide d’une méthode basée sur l’analyse d’images MEB en conditions de traitements isotherme et sous gradient thermique. Les analyses en isotherme mettent en évidence la cristallisation de cristaux d’apatite (660°C-900°C) et de powellite (630°C-900°C) et permettent de quantifier cette cristallisation (vitesses de croissance et de nucléation, fraction cristallisée) qui reste très limitée (< 3%). La comparaison des résultats issus de ces deux types d’expérimentations montre que le gradient thermique n’a pas d’impact mesurable sur les cristallisations observées. Afin de compléter les analyses surfaciques de la cristallisation, des mesures par microtomographie in et ex situ ont été réalisées à l’ESRF sur la ligne ID19. Cette étude a permis de suivre la cristallisation d’apatites dans un verre simplifié et de confirmer la fiabilité de la méthode de quantification de la cristallisation basée sur l’analyse d’images 2D. / In the context of the vitrification of high level nuclear waste, a new industrial process has been launched in 2010 at the La Hague factory: The skull melting process. This setup applies thermal gradients to the melt, which leads to the formation of a solid layer of glass: the “self-crucible”. The question would be to know whether these thermal gradients have an impact or not on the crystallization behaviour of the considered glasses in the self crucible. In order to answer that question, the crystallization of two glass compositions of nuclear interest has been investigated with an image analysis based method in isothermal and thermal gradient heat treatments conditions. The isothermals experiments allow for the quantification (growth speed, nucleation, crystallized fraction) of the crystallization of apatites (660°C-900°C) and powellites (630°C- 900°C). The comparison of the results obtained through these two types of experimentations allows us to conclude that there is no impact of the thermal gradient on the crystallization of the studied glass compositions. In order to complete the image analysis study (based on surfaces), in and ex situ microtomography experiments have been performed at ESRF (Grenoble) on the ID10 beamline. This study allowed us to follow the crystallization of apatites in a simplified glass and to confirm the reliability of the image analysis method based on the analysis of surfaces.
|
7 |
Vliv velikosti částic odpadního skla na vlastnosti alkalicky aktivovaných aluminosilikátových kompozitů / Effect of Grain Size of Waste Glass on Properties of Alkali Activated Aluminosilicate CompositesNovák, Václav January 2019 (has links)
The diploma thesis is focused on the use of the waste glass with different fineness on alkali - activated composites, mainly based on slag and fly ash. The theoretical part is focused on materials that are most used for alkaline activation - slag, fly ash and their composites with waste glass. The theoretical part also deals with the alkaline activation of composites from these materials and the factors that influences the microstructure and properties of these composites. In the experimental part were prepared composites from slag and fly ash with a waste glass as substitute. These composites then have been examined on mechanical properties and microstructure, also how different fineness of glass influences these properties. Then it will be decided whether it is economically advantageous grinding waste glass to finer fractions
|
8 |
Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate GlassesLu, Xiaonan 12 1900 (has links)
First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural study of ZrO2/SiO2 substitution in silicate/borosilicate glasses was systematically conducted by molecular dynamics (MD) simulation and the quantitative structure-property relationships (QSPR) analysis to correlate structural features with measured properties. Third, for bioactive glass formulation, mixed-network former effect of B2O3 and SiO2 on the structure, as well as the physical properties and bioactivity were studied by both experiments and MD simulation. B2O3/SiO2 substitution of 45S5 and 55S5 bioactive glasses increases the glass network connectivity, correlating well with the reduction of bioactivity tested in vitro. Lastly, the effect of optical dopants on the optimum analytical performance on atom probe tomography (APT) analysis of borosilicate glasses was explored. It was found that optical doping could be an effective way to improve data quality for APT analysis with a green laser assisted system, while laser spot size is found to be critical for optimum performance. The combined experimental and simulation approach adopted in this dissertation led to a deeper understanding of complex borosilicate glass structures and structural origins of various properties.
|
9 |
Development of ultra-high-performance concrete (UHPC) using waste glass materials ─ towards innovative eco-friendly concrete / Développement de béton à ultra-hautes performances (BFUP) à base de verre ─ vers un béton écologique innovantSoliman, Nancy January 2016 (has links)
Le béton conventionnel (BC) a de nombreux problèmes tels que la corrosion de l’acier d'armature et les faibles résistances des constructions en béton. Par conséquent, la plupart des structures fabriquées avec du BC exigent une maintenance fréquent. Le béton fibré à ultra-hautes performances (BFUP) peut être conçu pour éliminer certaines des faiblesses caractéristiques du BC. Le BFUP est défini à travers le monde comme un béton ayant des propriétés mécaniques, de ductilité et de durabilité supérieures. Le BFUP classique comprend entre 800 kg/m³ et 1000 kg/m³ de ciment, de 25 à 35% massique (%m) de fumée de silice (FS), de 0 à 40%m de poudre de quartz (PQ) et 110-140%m de sable de quartz (SQ) (les pourcentages massiques sont basés sur la masse totale en ciment des mélanges). Le BFUP contient des fibres d'acier pour améliorer sa ductilité et sa résistance aux efforts de traction. Les quantités importantes de ciment utilisées pour produire un BFUP affectent non seulement les coûts de production et la consommation de ressources naturelles comme le calcaire, l'argile, le charbon et l'énergie électrique, mais affectent également négativement les dommages sur l'environnement en raison de la production substantielle de gaz à effet de serre dont le gas carbonique (CO[indice inférieur 2]). Par ailleurs, la distribution granulométrique du ciment présente des vides microscopiques qui peuvent être remplis avec des matières plus fines telles que la FS. Par contre, une grande quantité de FS est nécessaire pour combler ces vides uniquement avec de la FS (25 à 30%m du ciment) ce qui engendre des coûts élevés puisqu’il s’agit d’une ressource limitée. Aussi, la FS diminue de manière significative l’ouvrabilité des BFUP en raison de sa surface spécifique Blaine élevée. L’utilisation du PQ et du SQ est également coûteuse et consomme des ressources naturelles importantes. D’ailleurs, les PQ et SQ sont considérés comme des obstacles pour l’utilisation des BFUP à grande échelle dans le marché du béton, car ils ne parviennent pas à satisfaire les exigences environnementales. D’ailleurs, un rapport d'Environnement Canada stipule que le quartz provoque des dommages environnementaux immédiats et à long terme en raison de son effet biologique. Le BFUP est généralement vendu sur le marché comme un produit préemballé, ce qui limite les modifications de conception par l'utilisateur. Il est normalement transporté sur de longues distances, contrairement aux composantes des BC. Ceci contribue également à la génération de gaz à effet de serre et conduit à un coût plus élevé du produit final. Par conséquent, il existe le besoin de développer d’autres matériaux disponibles localement ayant des fonctions similaires pour remplacer partiellement ou totalement la fumée de silice, le sable de quartz ou la poudre de quartz, et donc de réduire la teneur en ciment dans BFUP, tout en ayant des propriétés comparables ou meilleures. De grandes quantités de déchets verre ne peuvent pas être recyclées en raison de leur fragilité, de leur couleur, ou des coûts élevés de recyclage. La plupart des déchets de verre vont dans les sites d'enfouissement, ce qui est indésirable puisqu’il s’agit d’un matériau non biodégradable et donc moins respectueux de l'environnement. Au cours des dernières années, des études ont été réalisées afin d’utiliser des déchets de verre comme ajout cimentaire alternatif (ACA) ou comme granulats ultrafins dans le béton, en fonction de la distribution granulométrique et de la composition chimique de ceux-ci. Cette thèse présente un nouveau type de béton écologique à base de déchets de verre à ultra-hautes performances (BEVUP) développé à l'Université de Sherbrooke. Les bétons ont été conçus à l’aide de déchets verre de particules de tailles variées et de l’optimisation granulaire de la des matrices granulaires et cimentaires. Les BEVUP peuvent être conçus avec une quantité réduite de ciment (400 à 800 kg/m³), de FS (50 à 220 kg/m³), de PQ (0 à 400 kg/m³), et de SQ (0-1200 kg/m³), tout en intégrant divers produits de déchets de verre: du sable de verre (SV) (0-1200 kg/m³) ayant un diamètre moyen (d[indice inférieur 50]) de 275 µm, une grande quantité de poudre de verre (PV) (200-700 kg/m³) ayant un d50 de 11 µm, une teneur modérée de poudre de verre fine (PVF) (50-200 kg/m³) avec d[indice inférieur] 50 de 3,8 µm. Le BEVUP contient également des fibres d'acier (pour augmenter la résistance à la traction et améliorer la ductilité), du superplastifiants (10-60 kg/m³) ainsi qu’un rapport eau-liant (E/L) aussi bas que celui de BFUP. Le remplacement du ciment et des particules de FS avec des particules de verre non-absorbantes et lisse améliore la rhéologie des BEVUP. De plus, l’utilisation de la PVF en remplacement de la FS réduit la surface spécifique totale nette d’un mélange de FS et de PVF. Puisque la surface spécifique nette des particules diminue, la quantité d’eau nécessaire pour lubrifier les surfaces des particules est moindre, ce qui permet d’obtenir un affaissement supérieur pour un même E/L. Aussi, l'utilisation de déchets de verre dans le béton abaisse la chaleur cumulative d'hydratation, ce qui contribue à minimiser le retrait de fissuration potentiel. En fonction de la composition des BEVUP et de la température de cure, ce type de béton peut atteindre des résistances à la compression allant de 130 à 230 MPa, des résistances à la flexion supérieures à 20 MPa, des résistances à la traction supérieure à 10 MPa et un module d'élasticité supérieur à 40 GPa. Les performances mécaniques de BEVUP sont améliorées grâce à la réactivité du verre amorphe, à l'optimisation granulométrique et la densification des mélanges. Les produits de déchets de verre dans les BEVUP ont un comportement pouzzolanique et réagissent avec la portlandite générée par l'hydratation du ciment. Cependant, ceci n’est pas le cas avec le sable de quartz ni la poudre de quartz dans le BFUP classique, qui réagissent à la température élevée de 400 °C. L'addition des déchets de verre améliore la densification de l'interface entre les particules. Les particules de déchets de verre ont une grande rigidité, ce qui augmente le module d'élasticité du béton. Le BEVUP a également une très bonne durabilité. Sa porosité capillaire est très faible, et le matériau est extrêmement résistant à la pénétration d’ions chlorure (≈ 8 coulombs). Sa résistance à l'abrasion (indice de pertes volumiques) est inférieure à 1,3. Le BEVUP ne subit pratiquement aucune détérioration aux cycles de gel-dégel, même après 1000 cycles. Après une évaluation des BEVUP en laboratoire, une mise à l'échelle a été réalisée avec un malaxeur de béton industriel et une validation en chantier avec de la construction de deux passerelles. Les propriétés mécaniques supérieures des BEVUP a permis de concevoir les passerelles avec des sections réduites d’environ de 60% par rapport aux sections faites de BC. Le BEVUP offre plusieurs avantages économiques et environnementaux. Il réduit le coût de production et l’empreinte carbone des structures construites de béton fibré à ultra-hautes performances (BFUP) classique, en utilisant des matériaux disponibles localement. Il réduit les émissions de CO[indice inférieur 2] associées à la production de clinkers de ciment (50% de remplacement du ciment) et utilise efficacement les ressources naturelles. De plus, la production de BEVUP permet de réduire les quantités de déchets de verre stockés ou mis en décharge qui causent des problèmes environnementaux et pourrait permettre de sauver des millions de dollars qui pourraient être dépensés dans le traitement de ces déchets. Enfin, il offre une solution alternative aux entreprises de construction dans la production de BFUP à moindre coût. / Abstract : Conventional concrete (CC) may cause numerous problems on concrete structures such as corrosion of steel reinforcement and weaknesses of concrete construction. As a result, most of structures made with CC require maintenance. Ultra-high-performance concrete (UHPC) can be designed to eliminate some of the characteristic weaknesses of CC. UHPC is defined worldwide as concrete with superior mechanical, ductility, and durability properties. Conventional UHPC includes between 800 and 1000 kg/m³ of cement particles, 25–35%wt of silica fume (SF), 0–40 wt% of quartz powder (QP), and 110–140 wt% quartz sand (QS) (the percentages are based on the total cement content of the mix by weight). UHPC contains steel fibers to improve its ductility and tension capacity. The huge amount of cement used to produce UHPC not only affects production costs and consumes natural resources, limestone, clay, coal, and electric power, but it also negatively impacts the environment through carbon dioxide (CO[subscript 2]) emissions, which can contribute to the greenhouse effect. Additionally, the particle-size distribution (PSD) of cement exhibits a gap at the micro scale that needs to be filled with more finer materials such as SF. Filling this gap solely with SF requires a high amount of SF (25% to 30% by cement weight) which is a limited resource and involves high cost. This significantly also decreases UHPC workability due to high Blaine surface area of SF. QS and QP use is also costly and consumes natural resources. As such, they are considered as impedances for wide use of UHPC in the concrete market and fail to satisfy sustainability requirements. Furthermore, based on an Environment Canada report, quartz causes immediate and long-term environmental harm because its biological effect makes it an environmental hazard. Furthermore, UHPC is generally sold on the market as a prepackaged product, which limits any design changes by the user. Moreover, it is normally transported over long distances, unlike CC components. This increases to the greenhouse-gas effect and leads to higher cost of the final product. Therefore, there is a vital need for other locally available materials with similar functions to partially or fully replace silica fume, quartz sand, or quartz powder, and thereby reduce the cement content in UHPC, while having comparable or better properties. In some countries, and Canada in particular, large quantities of glass cannot be recycled because of the high breaking potential, color mixing, or high recycling costs. Most waste glass goes into landfill sites, which is undesirable since it is not biodegradable and less environmentally friendly. In recent years, attempts have been made to use waste glass as an alternative supplementary cementitious material (ASCM) or ultra-fine aggregate in concrete, depending on its chemical composition and particle-size distribution (PSD). This thesis is based on a new type of ecological ultra-high-performance glass concrete (UHPGC) developed at the Université de Sherbrooke. The concrete’s design involved using waste glass of varying particle-size distributions obtained from cullets and optimizing the packing density of the entire material matrix. UHPGC can be designed with a reduced amount of cement (400–800 kg/m³), silica fume (SF) (50–220 kg/m³), quartz powder (QP) (0–400 kg/m³), and quartz sand (QS) (0–1200 kg/m³), while incorporating various waste-glass products: glass sand (GS) (0–1200 kg/m³) with an average mean diameter (d[subscript 50]) of 275 μm, a high amount of glass powder (GP) (200–700 kg/m³) with average diameter (d[subscript 50]) of 11 μm, a moderate content of fine glass powder (FGP) (50–200 kg/m³) with d[subscript 50] of 3.8 μm. UHPGC also contains steel fibers (to increase tensile strength and improve ductility) and superplasticizer (10–60 kg/m³) as well as having a water-to-binder ratio (w/b) as low as that of UHPC. Replacing cement and silica-fume particles with non-absorptive and smooth glass particles improves UHPGC rheology. Furthermore, using FGP as a SF replacement reduces the net total surface area of a SF and FGP blend. This decreases the net particle surface area, it reduces the water needed to lubricate particle surfaces and increases the slump flow at the same w/b. Moreover, the use of waste glass material in concrete leads to lower cumulative heat of hydration, which helps minimize potential shrinkage cracking. Depending on UHPGC composition and curing temperature, this type of concrete yields compressive strength ranging from 130 up to 230 MPa, flexural strength above 20 MPa, tensile strength above 10 MPa, and elastic modulus above 40 GPa. The mechanical performance of UHPGC is enhanced by the reactivity of the amorphous waste glass and optimization of the packing density. The waste-glass products in UHPGC have pozzolanic behavior and react with the portlandite generated by cement hydration. This, however, is not the case with quartz sand and quartz powder in conventional UHPC, which react at high temperature of 400 °C. The waste-glass addition enhances clogging of the interface between particles. Waste-glass particles have high rigidity, which increases the concrete’s elastic modulus. UHPGC also has extremely good durability. Its capillary porosity is very low, and the material is extremely resistant to chloride-ion permeability (≈ 8 coulombs). Its abrasion resistance (volume loss index) is less than 1.3. UHPGC experiences virtually no freeze–thaw deterioration, even after 1000 freeze–thaw cycles. After laboratory assessment, the developed concrete was scaled up with a pilot plane and field validation with the construction of two footbridges as a case study. The higher mechanical properties allowed for the footbridges to be designed with about sections reduced by 60% compared to normal concrete. UHPGC offers several economic and environmental advantages. It reduces the production cost of ultra-high-performance concrete (UHPC) by using locally available materials and delivers a smaller carbon footprint than conventional UHPC structures. It reduces the CO[subscript 2] emissions associated with the production of cement clinkers (50% replacement of cement) and efficiently uses natural resources. In addition, high amounts of waste glass cause environmental problems if stockpiled or sent to landfills. Moreover, the use of waste glass in UHPGC could save millions of dollars that would otherwise be spent for treatment and placing waste glass in landfills. Lastly, it provides an alternative solution to the construction companies in producing UHPC at lower cost.
|
10 |
Vývoj progresivního kotevního materiálu na polymerní bázi / Development of progressive polymer anchor materialŽlebek, Tomáš January 2017 (has links)
The diploma thesis deals with development of a new progressive anchor material on the polymer base. Nowadays, it is effort to utilize secondary raw materials in building industry as much as possible both from an environmental aspects in order to save primary energy sources and the reduction of waste and also due to economic reasons. Therefore, there is an effort to utilize high amount of suitable and appropriately treated secondary raw materials into the anchor materials. The main aim of this work is to develop high quality anchor material characterized by excellent ratio between speed and strength growth, high chemical resistance, thermal resistance and particularly minimal shrinkage. This new material is designed especially for anchoring building structures heavy machines steel barriers and other elements.
|
Page generated in 0.0748 seconds