• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 933
  • 701
  • 118
  • 107
  • 95
  • 73
  • 25
  • 17
  • 16
  • 14
  • 12
  • 9
  • 9
  • 7
  • 6
  • Tagged with
  • 2514
  • 1210
  • 525
  • 415
  • 363
  • 342
  • 241
  • 228
  • 201
  • 199
  • 186
  • 167
  • 164
  • 162
  • 155
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Assessing the Impacts of Silver Nanoparticles on the Growth, Diversity, and Function of Wastewater Bacteria

Arnaout, Christina Lee January 2012 (has links)
<p>Silver nanoparticles (AgNPs) are increasingly being integrated into a wide range of consumer products, such as air filters, washing machines, and textiles, due to their antimicrobial properties [1]. However, despite the beneficial applications of AgNPs into consumer products, it is likely that their use will facilitate the release of AgNPs into wastewater treatment plants, thereby possibly negatively impacting key microorganisms involved in nutrient removal. For this reason, it is important to characterize the effects of AgNPs in natural and engineered systems and to measure the antimicrobial effect of AgNPs on wastewater microorganisms. Polyvinyl alcohol coated AgNPs have already been linked to decreased nitrifying activity [2] and it is important to determine if AgNPs coated with other materials follow similar trends. Furthermore, it is likely that, with repeated exposure to AgNPs microbial communities could evolve and develop resistance to silver. Thus, a long-term effect of silver nanoparticle exposure could be a reduction of the efficacy of such products in a similar fashion to the development of microbial antibiotic resistance [3]. Therefore, it is critical that the impacts of these materials be ascertained in wastewater treatment systems to prevent long-term negative effects. </p><p>The objectives of this dissertation were to: 1) characterize the effect of several different AgNPs on the ammonia oxidizing bacterium (AOB) Nitrosomonas europaea and investigate possible mechanisms for toxicity, 2) test the effects of consumer product AgNPs on a wide range of heterotrophic bacteria, 3) evaluate the effects of AgNPs on bench scale wastewater sequencing batch reactors, and lastly 4) assess the impacts on microbial communities that are applied with AgNP spiked wastewater biosolids. </p><p>First, Nitrosomonas europaea was was selected because wastewater nitrifying microorganisms carry out the first step in nitrification and are known to be sensitive to a wide range of toxicants [4].The antimicrobial effects of AgNPs on the AOB N. europaea were measured by comparing nitrite production rates in a dose response assay and analyzing cell viability using the LIVE/DEAD® fluorescent staining assay. AgNP toxicity to N. europaea appeared to be largely nanoparticle coating dependent. While PVP coated AgNPs have shown reductions up to 15% in nitrite production at 20 ppm, other AgNPs such as gum arabic (GA) coated showed the same level of inhibition at concentrations of 2 ppm. The first mechanism of inhibition appears to be a post-transcriptional interference of AMO/HAO by either dissolved Ag or ROS, in treatments where membranes are not completely disrupted but nitrite production decreased (2 ppm GA AgNP and 2 ppm PVP AgNP treatments). The disruption of nitrification is dependent on AgNP characteristics, such as zeta potential and coating, which will dictate how fast the AgNP will release Ag+ and ROS production Finally, total membrane loss and release of internal cellular matter occur. </p><p>In order to test the effects of AgNP products available to consumers, simple bacterial toxicity tests were carried out on well-studied heterotrophic bacteria. A model gram-positive and gram-negative bacterium (B. subtilis and E. coli, respectively) was selected to assess any differences in sensitivity that may occur with the exposure to AgNPs. A third model gram-negative bacterium (P. aeruginosa) was chosen for its biofilm forming capabilities. In addition to testing pure nanoparticles, three silver supplements meant for ingestion, were randomly chosen to test with these three bacteria. Growth curve assays and LIVE/DEAD staining indicate that the consumer product AgNPs had the most significant inhibition on growth rates, but not membrane integrity. Overall, P. aeruginosa was most negatively affected by all AgNPs with nearly 100% growth inhibition for all 2 ppm AgNP treatments. TEM imaging also confirmed cell wall separation in P. aeruginosa and internal density differences for E. coli. The effects on B. subtilis, a gram-positive bacterium, were not as severe but toxicity was observed for several AgNPs at concentrations greater than 2 ppm. Citrate AgNPs appeared to have the most impact on membrane integrity, while other mechanisms such as internal thiol binding might have been at work for other AgNPs. </p><p>The effects of varying concentrations of pure AgNPs on complex microbial wastewater reactors are currently being tested. Eight bench-scale sequencing batch reactors were set up to follow the typical "fill, react, settle, decant, idle" method with an 8 hour hydraulic retention time and constant aeration. Reactors were fed synthetic wastewater and treatment efficiency is measured by monitoring effluent concentrations of COD, NH4+, and NO3-. The reactors were seeded with 500 mL of activated sludge from a local wastewater treatment plant. After reaching steady state, the reactors were spiked with 0.2 ppm gum arabic and citrate coated AgNPs. Treatment efficiency was monitored and results showed significant spikes and ammonia and COD immediately following the first spike, but the microbial community appeared to adapt for future AgNP spikes. Microbial community analysis (terminal restriction fragment length polymorphism) showed confirmed this hypothesis. </p><p>Overall, this dissertation asserts that by examining AgNP coating type, Ag+ dissolution rates and Stern layer surface charge, it may be possible to predict which AgNPs may be more detrimental wastewater treatment, but not all AgNPs will have the same effect. The results obtained herein must be expanded to other types of AgNPs and microorganisms of ecological importance.</p> / Dissertation
162

An Evaluation of Alternatives for Enhancing Anaerobic Digestion of Waste Activated Sludge

Pickel, Jessica Lee January 2010 (has links)
Waste activated sludge (WAS) is one of the largest by-products of biological wastewater treatment. Anaerobic digestion of WAS is beneficial for several reasons. In an ever increasingly energy conscientious world the production of renewable energy resources is becoming more important, and thus the production of methane has been seen as a valuable product. To achieve efficient conversion of organic matter to methane, the biomass in the digester must be provided optimal operating conditions, as well as adequate retention times, that will allow for substrate metabolism and prevent bacteria washout. Two approaches have been taken in this research to achieve improved biodegradation. Initially microwave pretreatment was employed to improve the biodegradability of the sludge, then the addition of a submerged hollow fibre membrane separation unit was used to allow for a longer SRT while maintaining the hydraulic residence time (HRT). The impact of microwave pretreatment on WAS characteristics was assessed for both the low temperature operations and the high temperature operations. An increase due to pretreatment on the filtered to total COD ratio when comparing the feed to the microwaved feed was established to be 200 % for low temperature operations and 254 % for high temperature operations. For the low temperature operations, CODT destruction, VS destruction, and organic nitrogen destruction were all higher for the test digester than the control digester indicating that the microwaving of the WAS increased the biodegradation in the anaerobic digester. For the high temperature operation, CODT destruction and organic nitrogen destruction were improved with microwave application, however VS destruction did not support this. The measured biogas data indicated that microwaving did influence the volume of biogas produced during anaerobic digestion of WAS for both the low and high temperature operations, and hence the VS destruction data for the high temperature operations was determined to be incorrect. For the membrane operations both the CODT and the VS destruction calculations indicated that at the same SRT the test digester was capable of more biodegradation than the control digester. The control digester organic nitrogen reduction was calculated to be higher than for the test digester, suggesting that the control digester removed more organic nitrogen than the test digester, however, these results were likely due to the lower HRT of the test digester compared to those of the control digester. A greater volume of biogas was produced by the test digester than the control digester; however, the composition of the gas from both digesters was similar, although the percentage of methane produced by the test digester was higher than that produced by the control digester. The higher destruction by the test digester indicated that the presence of the membrane unit and the decoupling of the HRT and SRT improved the biodegradation capability of the digesters. The results of the membrane performance study indicated that for a hollow fibre anaerobic membrane bioreactor, stable operations could be achieved with a total solids concentration of 2.01 %+/-0.34, an HRT of 15 days and an SRT of 30 days. With a constant flux of 14 L/m2-h +/-0.68 the average TMP was 0.079 kPa/min+/-0.08. No cleaning was required to achieve this, however the operations consisted of 20 minutes of permeation followed by 5 hours and 40 minutes of relaxation. The critical flux was determined to be in the range of 18 to 22 L/m2-h.
163

Alternative Methods for Evaluation of Oxygen Transfer Performance in Clean Water / Alternativa metoder för utvärdering av syreöverföringsprestanda i rent vatten

Fändriks, Ingrid January 2011 (has links)
Aeration of wastewater is performed in many wastewater treatment plants to supply oxygen to microorganisms. To evaluate the performance of a single aerator or an aeration system, there is a standard method for oxygen transfer measurements in clean water used today. The method includes a model that describes the aeration process and the model parameters could be estimated using nonlinear regression. The model is a simplified description of the oxygen transfer which could possibly result in performance results that are not accurate. That is why many have tried to describe the aeration at other ways and with other parameters. The focus of this Master Thesis has been to develop alternative models which better describe the aeration that could result in more accurate performance results. Data for model evaluations have been measured in two different tanks with various numbers of aerators. Five alternative methods containing new models for oxygen transfer evaluation have been studied in this thesis. The model in method nr 1 assumes that the oxygen transfer is different depending on where in a tank the dissolved oxygen concentration is measured. It is assumed to be faster in a water volume containing air bubbles. The size of the water volumes and the mixing between them can be described as model parameters and also estimated. The model was evaluated with measured data from the two different aeration systems where the water mixing was relatively big which resulted in that the model assumed that the whole water volume contained air bubbles. After evaluating the results, the model was considered to maybe be useful for aeration systems where the mixing of the water volumes was relatively small in comparison to the total water volume. However, the method should be further studied to evaluate its usability. Method nr 2 contained a model with two separate model parameter, one for the oxygen transfer for the air bubbles and one for the oxygen transfer at the water surface. The model appeared to be sensitive for which initial guesses that was used for the estimated parameters and it was assumed to reduce the model’s usability. Model nr 3 considered that the dissolved oxygen equilibrium concentration in water is depth dependent and was assumed to increase with increasing water depth. Also this model assumed that the oxygen was transferred from both the air bubbles and at the water surface. The model was considered to be useful but further investigations about whether the saturation concentrations should be constant or vary with water depth should be performed. The other two methods contained models that were combinations of the previous mentioned model approaches but was considered to not be useful.
164

An Evaluation of Alternatives for Enhancing Anaerobic Digestion of Waste Activated Sludge

Pickel, Jessica Lee January 2010 (has links)
Waste activated sludge (WAS) is one of the largest by-products of biological wastewater treatment. Anaerobic digestion of WAS is beneficial for several reasons. In an ever increasingly energy conscientious world the production of renewable energy resources is becoming more important, and thus the production of methane has been seen as a valuable product. To achieve efficient conversion of organic matter to methane, the biomass in the digester must be provided optimal operating conditions, as well as adequate retention times, that will allow for substrate metabolism and prevent bacteria washout. Two approaches have been taken in this research to achieve improved biodegradation. Initially microwave pretreatment was employed to improve the biodegradability of the sludge, then the addition of a submerged hollow fibre membrane separation unit was used to allow for a longer SRT while maintaining the hydraulic residence time (HRT). The impact of microwave pretreatment on WAS characteristics was assessed for both the low temperature operations and the high temperature operations. An increase due to pretreatment on the filtered to total COD ratio when comparing the feed to the microwaved feed was established to be 200 % for low temperature operations and 254 % for high temperature operations. For the low temperature operations, CODT destruction, VS destruction, and organic nitrogen destruction were all higher for the test digester than the control digester indicating that the microwaving of the WAS increased the biodegradation in the anaerobic digester. For the high temperature operation, CODT destruction and organic nitrogen destruction were improved with microwave application, however VS destruction did not support this. The measured biogas data indicated that microwaving did influence the volume of biogas produced during anaerobic digestion of WAS for both the low and high temperature operations, and hence the VS destruction data for the high temperature operations was determined to be incorrect. For the membrane operations both the CODT and the VS destruction calculations indicated that at the same SRT the test digester was capable of more biodegradation than the control digester. The control digester organic nitrogen reduction was calculated to be higher than for the test digester, suggesting that the control digester removed more organic nitrogen than the test digester, however, these results were likely due to the lower HRT of the test digester compared to those of the control digester. A greater volume of biogas was produced by the test digester than the control digester; however, the composition of the gas from both digesters was similar, although the percentage of methane produced by the test digester was higher than that produced by the control digester. The higher destruction by the test digester indicated that the presence of the membrane unit and the decoupling of the HRT and SRT improved the biodegradation capability of the digesters. The results of the membrane performance study indicated that for a hollow fibre anaerobic membrane bioreactor, stable operations could be achieved with a total solids concentration of 2.01 %+/-0.34, an HRT of 15 days and an SRT of 30 days. With a constant flux of 14 L/m2-h +/-0.68 the average TMP was 0.079 kPa/min+/-0.08. No cleaning was required to achieve this, however the operations consisted of 20 minutes of permeation followed by 5 hours and 40 minutes of relaxation. The critical flux was determined to be in the range of 18 to 22 L/m2-h.
165

The Response of Wild Fish to Municipal Wastewater Effluent Exposures at Sites in Canada

Tetreault, Gerald 08 March 2012 (has links)
Aquatic receiving environments have long been used to dilute municipal wastewater effluents (MWWE) which are the largest discharge by volume into the aquatic environment in Canada. These treated effluents are a complex mixture of environmental contaminants that includes natural and synthetic hormones, pharmaceuticals, industrial chemicals, nutrients and ammonia. Discharge of MWWE may lead to serious problems in aquatic environments such as eutrophication, hypoxia as well as increased occurrence of disease and toxicity in resident aquatic biota. Reproductive impairment in fish has also been widely reported in association with exposure to wastewaters. Recently, concerns have been raised about the potential for municipal effluents to cause endocrine disruption in fish and other organisms. The effects of MWWE on fish and fish populations in Canada are currently poorly understood. The overall objective of this thesis is to contrast the impact of MWWE discharged into two Canadian rivers on sentinel fish species across levels of biological organization ranging from biochemical responses to changes at the fish community level. Results from these studies support the development of robust effects-based biological monitoring approaches to assess the effectiveness of regulations and remedial actions for minimizing the effects of MWWE. Understanding the temporal changes in physiological and reproductive parameters across the annual cycle of a sentinel species is necessary to optimize biomonitoring programs. The annual variability in terms of survival, reproduction and energy storage in the Greenside Darter (Etheostoma blennioides), a potential sentinel species for the Grand River, Ontario, was documented at a reference site across two years. Variation in energy storage and reproductive development indicated by somatic indices (i.e., relative organ size) and steroid production suggest that biomonitoring can be optimized for this species by sampling in late fall or early spring (pre-spawning). With this new knowledge, field studies conducted with small bodied species, including Rainbow Darter (E. caeruleum), Brook Stickleback (Culaea inconstans) and Fathead Minnow (Pimephales promelas) have demonstrated that, when sampled during the appropriate season (e.g., pre-spawning), they can be used as effective biomonitoring tools to detect fish responses associated with exposure to MWWEs. Two sentinel fish species, Rainbow Darter and Greenside Darter, were then used to examine the impact of two MWWE discharges on fish in the Grand River, Ontario, relative to reference sites in two seasons (fall and early spring). Fish responses, in terms of energy storage (condition factor, liver size), energy utilization (gonadosomatic indices) and reproduction (in vitro sex steroid production, cellular development and intersex) were assessed at each site. Both sentinel species were longer and heavier downstream of the wastewater outfalls. However, these larger fish did not demonstrate consistent increases in condition and liver somatic indices. MWWE-exposed male Rainbow and Greenside Darters had impaired capacity to produce androgens in vitro, lower gonadosomatic indices and altered sperm cell staging. Exposed female fish also had impaired capacity to produce estrogens in vitro, however, they did not demonstrate differences in oocyte development. Male Rainbow and Greenside Darters collected downstream of both MWWE discharges showed increased incidence of intersex (33 - 100%) in contrast to very low occurrences of this condition in upstream agricultural and urban reference sites. This increased incidence of intersex coincided with reductions in gonadosomatic indices and capacity to produce steroids, demonstrating the ability of MWWE to alter the reproductive systems of these fish. The fish communities downstream of the the MWWE outfalls demonstrated differences in abundance, diversity, and species composition when compared to reference sites. MWWE exposed sites had few of the darter species that dominate the fish community at reference sites. More mobile fish species such as suckers (Catostomidae spp.) and sunfish (Centrarchidae spp.) were more common downstream of the outfalls, with occurances becoming more pronounced downstream of the second sewage discharge. Wascana Creek, Saskatchewan, downstream of the wastewater treatment plant for the City of Regina can be up to 100% treated municipal wastewater. Brook Stickleback and Fathead Minnow exhibited delayed spawning and altered gonadal development downstream of the wastewater outfall. Exposed male Fathead Minnows were feminized, having lower expression of secondary sexual characteristics (i.e., loss of nuptial tubercles, dorsal pad, and dorsal fin dot) and induction of the female egg-yolk precursor protein, vitellogenin. Fathead Minnows also showed cellular damage to the gills and kidneys. These responses indicate exposure to a variety of environmental contaminants in the effluent such as ammonia as well as endocrine disruptors. The potential effect of MWWE discharges in these two Canadian watersheds on fish responses was demonstrated across various levels of biological organization including reduced sex steroid production, altered gonadal development, reduction in gonadosomatic indices, delayed spawning, and changes in fish assemblages. An effects-based monitoring approach using sentinel species can be successfully applied to detect changes associated with MWWE outfalls, as long as sampling of sentinel species is conducted during optimal time periods (i.e., when somatic indices are maximized and variability among individuals is minimized). MWWE can impair the reproductive potential of fish beyond a threshold where impacts are expressed at higher levels of organization such as populations or communities. It is essential to make mechanistic linkages between responses at different levels to determine the overall potential impact of effluents on fish. The collection of responses across multiple levels of biological organization can complement and support development of biomonitoring approaches that are focused at the population and community levels such as those being proposed for MWWE in Canada.
166

Biosorption of nickel by barley straw

Thevannan, Ayyasamy 22 September 2009 (has links)
Nickel contaminated wastewater from plating industries is a major environmental concern. Current treatment methods are often expensive and can also create additional problems. Biosorption is an alternative treatment method that uses inexpensive biomaterials to sequester metals from aqueous solutions. In this study, acid washed barley straw (AWBS) was used for adsorbing nickel ions (Ni2+) from simulated nickel plating wastewater. The adsorption process was rapid and the equilibrium was reached in about an hour. An increase in the initial nickel concentration increased the equilibrium nickel uptake, and the maximum uptake was found to be 8.45 mg/g of AWBS when the initial nickel concentration was1000 mg/L at pH 5. Nickel adsorption was favorable at room temperature than 5oC and 40oC, better adsorption rate and equilibrium uptake was observed at 23oC. Increasing the pH from 3 to 7 increased the equilibrium nickel uptake and the maximum uptake was observed at pH 7, whilst the initial nickel ion concentration was 100 mg/L. The Freundlich isotherm model exhibited better fit with the equilibrium data than the Langmuir equation. Nickel was desorbed using hydrochloric acid solution at pH 2 and the desorption efficiency was 86%. FT-IR studies indicated the participation of hydroxyl, carboxyl and amide groups from cellulose, hemi-cellulose, protein and lignin of barley straw.
167

16S rRNA-Based Tag Pyrosequencing of Complex Food and Wastewater Environments: Microbial Diversity and Dynamics

McElhany, Katherine 2010 December 1900 (has links)
Environmental microbiology has traditionally been performed using culture-based methods. However, in the last few decades, the emergence of molecular methods has changed the field considerably. The latest development in this area has been the introduction of next-generation sequencing, including pyrosequencing. These technologies allow the massively parallel sequencing of millions of DNA strands and represent a major development in sequencing technologies. The purpose of this study was to use both pyrosequencing and traditional culture-based techniques to investigate the diversity and dynamics of bacterial populations within milk and untreated sewage sludge samples. Pasteurized and raw milk samples were collected from grocery stores and dairies within Texas. Milk samples were analyzed by plating, pyrosequencing, and an assay for the presence of cell-cell signaling molecules. Samples were processed, stored, and then evaluated again for spoilage microflora. The results of this study showed that raw milk had a considerably higher bacterial load, more diversity between samples, and a significantly higher concentration of pathogens than pasteurized milk. Additionally, this study provided evidence for varying spoilage microflora between raw and pasteurized milk, as well as evidence for the production of cell-cell signaling molecules by bacterial organisms involved in milk spoilage. Four samplings of untreated sewage sludge were collected from wastewater treatment plants in seven different municipalities across the United States. Samples were subjected to quantification of selected bacterial organisms by culture and a pyrosequencing analysis was performed on extracted community DNA. The results of this study showed that untreated sewage sludge is inhabited by a huge diversity of microorganisms and that certain municipalities may have distinct bacterial populations that are conserved over time. Additionally, this study provided some evidence for seasonal differences in several of the major bacterial phyla. Lastly, this study emphasized the challenges of comparing results obtained by culture and pyrosequencing. In conclusion, this study showed that both milk and sewage are highly diverse, dynamic environments that can contain organisms of public health concern. The use of both culture-based methods and pyrosequencing in this study proved a complementary approach, providing a more comprehensive picture of both microbial environments.
168

Treatment of Nanosized TiO2-Containing Organic Wastewater by a Simultaneous Electrocoagulation/Electrofiltration Process

Chuang, Chih-Chuan 30 July 2004 (has links)
In this study, nanosized TiO2-containing organic wastewater was treated with a simultaneous electrocoagulation/electrofiltration (EC/EF) process using either a recirculation mode or a flow-through mode. In the EC/EF treatment module, iron and stainless steel (SS 304) were respectively selected as the anode and cathode, and polyvinylidene fluoride (PVDF) with a nominal pore size of 0.1 £gm was used in this work. Applied electric field strength (EFS), transmembrane pressure (TMP), and crossflow velocity (CFV) were selected as the operating parameters for studying their effects on permeate qualities and other performance criteria. In the recirculation mode, the residual chemical oxygen demand (COD) was found to decrease with increasing EFS up to the critical EFS (i.e., 166.7 V/cm) and leveled off. The optimal operating conditions were determined to be an EFS of 166.7 V/cm, a TMP of 1 kgf/cm2, and a CFV of 0.22 cm/s. Under the optimal operating conditions, the removal efficiencies for turbidity, conductivity, total dissolved solids (TSD), and titanium were determined to be 98.7%, 95.1%, 95.8%, and 99.9%, respectively. By using the same operating conditions except in the flow-through mode, the corresponding removal efficiencies were found to be 98.1%, 92.3%, 93.1%, and 99.9%, respectively. Experimental results also showed that the flow-through mode yielded a higher filtration rate than that of the recirculation mode (namely, 5.05 mL/min versus 4.75 mL/min). This is an indication of a lower extent of membrane fouling for the flow-through mode. This was also evidenced by the scanning electron microscope (SEM) micrographs of the post-treatment membranes. In the recirculation mode, a proper practice of backflushing (e.g., a period of 60 min and a duration of 0.5 min) was found to extend the service life of the membrane and to enhance the permeate flux. I so doing, a minimum treatment rate of 90L/hr with a treatment cost of NT$68.10 per cubic meters would be resulted. Permeate obtained was found to meet the criteria of make-up water for cooling towers. Overall speaking, the simultaneous EC/EF treatment module employed in this work is capable of treating nanosized TiO2-containing organic wastewater for the purpose of reclamation.
169

Study on the treatment of sewage mixed with partially-treated swine wastewater by a combined upflow anaerobic sludge blanket and constructed wetland process

Lee, Hsin-Yi 27 June 2007 (has links)
A system with the combination of upflow anaerobic sludge blanket (UASB) reactor and constructed wetlands (CWLs) has not yet been applied for cleaning river water polluted by sewage and swine wastewater. In this study, a pilot system with an UASB reactor (effective working volume 2.5 liters) combined with two CWL reactors (effective working volumes 54.4 and 80 liters for CWL-1 and CWL-2, respectively) was used to test the feasibility for treating wastewater samples prepared by mixing 1 volume of sewage and 1 volume of partially-treated swine wastewater. In the system, the UASB reactor was seeded with an anaerobic sludge for sewage treatment and CWL-1 and CWL-2 were planted with emergent macrophyte (reed, Phragmites australis L.) and floating macrophyte (Pistia stratiotes L.), respectively. Effects of hydraulic retention time (HRT) of the test wastewater in the UASB reactor on the removal efficacy of various pollutants were tested. HRTs of 6, 4, and 2 hours were set for the UASB for the first, second, and third experimental phases, respectively. The tested influent wastewater had the following properties (unit in mg/L and the number in parentheses indicates the average value): total CODt 64-332 (179), soluble CODS 28-267 (129), soluble BODS 8-120 (70), SS 110-1330 (372), NH3-N 20-99 (48), NO3--N 1.2-11.9 (2.7), NO2--N 0-3.4 (1.0), total nitrogen TN 24.3-95.7 (56.8), PO43--P 0-10.4 (2.9), total phosphorus TP 5.1-52.1 (23.9), Cu 0.0-0.41 (0.13), Zn 0.05-0.73 (0.27), DO 0.2-2.7 (0.7), and pH 6.9-7.7 (7.4). Effluents from the UASB reactor for the third phase test had average values of CODt 55, CODS 40, BODS 27, SS 93, NH3-N 42, NO3--N 2.6, NO2--N 0.5, TN 43.7, PO43--P 0.9, TP 17.2, Cu 0.08, Zn 0.07, DO 0.04, and pH 7.4. For the phase, effluents from the combined UASB-CWL1-CWL2 system had average values of CODt 21, CODS 16, BODS 10, SS 38, NH3-N 2, NO3--N 1.9, NO2--N 0.1, TN 11.3, PO43--P 2.6, TP 5.9, Cu 0.06, Zn 0.05, DO 5.4, and pH 7.6. The system has been shown to be economically and technically feasible for cleaning the test wastewater.
170

Chlorination Decoloration of Textile Wastewaters and Dyestuffs-A Kinetic Study

Kan, Chia-Hsin 17 July 2000 (has links)
Almost all dyestuffs used for textile processing impose heavy colors on effluents such that they can¡¦t meet effluent regulations. Sodium hypochlorite (NaOCl) has long been used for effluent decoloration by most textile plants. However, despite by the operators¡¦ experience, there is still no scientific method for controlling the dosing rate of sodium hypochlorite. An insufficient dosage may result in an aesthetically and legally unacceptable effluent. Whereas an excessive one may lead to the formation of chlorine-containing organic compounds which are harmful to the aquatic life and may limit the water utilization. It is necessary to develop a control technique for chlorination decoloration of textile wastewaters. In this study, secondary effluent samples from a textile wastewater plant and synthetic wastewater samples prepared by two azo-type dyestuffs were used for chlorination decoloration tests in a batch reactor with a residual chlorine indicator. Experimental results indicate that the most economic and effective reaction conditions for decoloration of the test wastewaters were pH = 4 and residual chlorine = 14 mg/L. In the conditions, wastewaters with true color intensity = 1,200 ADMI could be reduced to values less than 400 ADMI within 60 min. Results also confirm that on-line monitoring of residual chlorine concentration in the reacting liquid can be used to achieve a better control of chlorine addition. Experimental data also indicate that the color removal rate (-dC/dt) was linearly proportional to the color intensity (C) and free hypochlorous acid (HOCl) concentration.

Page generated in 0.0731 seconds