Spelling suggestions: "subject:"wastewater"" "subject:"awastewater""
301 |
Using reclaimed water for golf course irrigation to improve water resource management in the Lower Arkansas River BasinMcCluskey, Kara M. January 1900 (has links)
Master of Science / Civil Engineering / David R. Steward / With an increasing population, municipalities in the United States are struggling to secure safe, reliable water sources for future water demands. Alternative water sources are being considered to improve the overall water management picture. Wastewater reuse, reusing wastewater effluent for beneficial purposes, is an alternative water source that is gaining popularity in the United States.
In this study a theoretical framework was developed to enable a region to quickly assess the feasibility of reusing wastewater for irrigation needs. Three criteria were established for the framework; they are, regulations and guidelines for reuse, adequate flow ratio, and cost benefit analysis. As a region moves through the framework and criteria a list of feasible wastewater facilities and end users are established. A model was developed for the cost benefit analysis based on regional input. As regulatory frameworks and economic factors evolve over time the model can be updated to assess how these changes will affect water reuse in a region. The model will provide a useful tool for a region to integrate wastewater reuse into the water resource management process.
The Lower Arkansas River Basin (LARK) was highlighted by the Kansas Water Office as a region that should investigate the role of reuse in water conservation. Results from this report indicate 963 million gallons per year (MG/yr) of wastewater effluent could feasibly be used to irrigate 9 hole and 18 hole golf courses in the region. The results determined that any 18 hole golf course within a 15.9 mile radius of a wastewater treatment facility in the LARK could payback the capital costs for wastewater reuse within 10 years. This information is a useful tool for the region to start the discussion for implementing wastewater reuse in the region.
The results from this report indicate wastewater reuse for golf course irrigation is economically feasible in the LARK. Establishing a safe reliable water source for the future is paramount to the future of Kansas. Future research is needed to determine how the wastewater diversion affects the environmental balance of the permitted discharge location.
|
302 |
Closing the Loop by Combining UASB Reactor and Reactive Bed Filetr Technology for wastewater Treatment : Modelling and Practical ApproachesRodríguez-Gómez, Raúl January 2016 (has links)
A laboratory-scale upflow anaerobic sludge blanket (UASB) reactor followed by a packed bed reactor (PBR) filled with Sorbulite® in the lower part and Polonite® in the upper part was used to treat household wastewater in a 50-week experiment. A model was developed to describe the performance of the UASB reactor, including mass transfer through the film around anaerobic granules, intra-particle diffusion and bioconversion of the substrate. In a second model, a numerical expression describing the kinetics occurring in the granules was developed. It includes the resistances through which the substrate passes before biotransformation. These expressions were then linked to governing equations for the UASB reactor in order to describe degradation of the substrate, biomass growth (active and inactive), and variation in granule size over time. A third model was developed to describe the profile of the phosphorus (P) concentration throughout the PBR. In a first attempt, the analytical and numerical model was applied to data taken from previous studies in which UASB reactors were used to treat sugarcane mill wastewater and slaughterhouse wastewater. The results showed good agreement between observed and simulated results. Sensitivity analysis showed that diffusion coefficient and yield were important parameters in the UASB reactor model.The laboratory bench-scale experiment revealed that the combined UASB-PBR system efficiently treated the residential wastewater. Phosphorus, BOD7 and pathogenic bacteria all showed average removal of 99%, while total nitrogen showed a moderate reduction in the system (40%). Application of the numerical solution model to the experimental UASB reactor used resulted in good agreement between simulated and experimental values. Regarding the PBR, the model developed successfully predicted P removal. For both models, the capability and sensitivity analyses identified important parameters. A treatment system aiming to close the loop is suggested based on sequential UASB and PBR with biogas collection, nutrient recycling via sludge and filter media and elimination of pathogenic organisms. / <p>QC 20160226</p>
|
303 |
Chitobiase as a tool in water quality monitoringMacKenzie, Scott 11 March 2016 (has links)
Time-consuming and expensive benthic surveys are currently the most common means of determining impacts on invertebrates and fish habitat in lotic systems. We propose using the rate of chitobiase production by benthic invertebrates as a complement for determining impacts on freshwater systems. We successfully modified the existing assay to a microplate approach for high throughput analysis of chitobiase activity. Next we conducted two case studies in: 1) the Dead Horse Creek, Manitoba, to determine if changes in chitobiase could detect impacts on the benthic community from wastewater effluent and; 2) in Snake and Kinch Creeks, Manitoba to see if chitobiase could be used to assess fish habitat quality. In both cases, we observed no strong relationships between chitobiase and traditional metrics (e.g., abundance, biomass, diversity). We recommend further studies concerning the timing of chitobiase release in lotic systems and assessments of its use in mesocosm and microcosm toxicity studies / May 2016
|
304 |
The potential for using energy from flared gas or renewable resources for on-site hydraulic fracturing wastewater treatmentGlazer, Yael Rebecca 18 September 2014 (has links)
The oil and gas well completion method of hydraulic fracturing faces several environmental challenges: the process is highly water-intensive; it generates a significant volume of wastewater; and it is associated with widespread flaring of co-produced natural gas. One possible solution to simultaneously mitigate these challenges is to use the energy from flared natural gas to power on-site wastewater treatment, thereby reducing 1) flared gas without application, 2) the volumes of wastewater, and 3) the volumes of freshwater that need to be procured for subsequent shale production, as the treated wastewater could be reused. In regions with minimal flaring a potential solution is to couple renewable electricity (generated from solar and wind energy) with on-site wastewater treatment, thereby 1) reducing the volumes of wastewater, 2) reducing the volumes of freshwater that need to be procured for subsequent shale production, and 3) displacing fossil fuel energy for treatment. This study builds an analytical framework for assessing the technical potential of these approaches. In this research, the hydraulic fracturing wastewater characteristics (such as quality, quantity, and flow rates) were considered along with various treatment technologies best suited to utilizing natural gas and renewable electricity, using the Permian Basin in
west Texas as a geographic test bed for analysis. For the analysis looking at using flared natural gas energy for on-site treatment, the required volume of gas to meet the thermal energy requirements for treatment was calculated on a per-well basis. Additionally, the volume of product water (defined here as the treated water that can be reused) based on the technology type was determined. Finally, the theoretical maximum volume of product water that could be generated using the total volume of natural gas that was flared in Texas in 2012 as a benchmark was calculated. It was concluded that the thermal energy required to treat wastewater that returns to the surface over the first ten days after a well is completed is 140–820 Million British Thermal Units (MMBTU) and would generate 750–6,800 cubic meters of product water depending on the treatment technology. Additionally, based on the thermal technologies assessed in this study, the theoretical maximum volume of product water that can be generated statewide using the energy from the flared gas in 2012 is 180–540 million cubic meters, representing approximately 3–9% of the state’s annual water demand for municipal purposes or 1–2.4% of total statewide water demand for all purposes. This is enough gas to treat more water than was projected would be used for the entire mining sector in 2010 in Texas. For the analysis coupling renewable electricity with on-site treatment, the necessary energy for water management upstream and downstream of a well site was calculated and compared with the current energy requirements and those of a proposed strategy where a portion of the wastewater is treated on-site and reused on a subsequent well. Through this analysis, it was determined that implementing on-site treatment using renewable electricity could reduce freshwater requirements by 11–26%. Finally, it was calculated that this approach could displace approximately 16% of the fossil fuel energy requirements for pumping freshwater, trucking that water to the well site, and trucking wastewater to a disposal well. / text
|
305 |
Treatment of shale gas wastewater in the Marcellus : a comparative analysisYisa, Junaid Ololade 18 November 2014 (has links)
This analysis focused primarily on three main treatment methods which were re-use, recycle, and disposal wells. The re-use treatment option is when wastewater is mixed with source water in order to meet fracturing water requirements. With this option, the hope is that the wastewater for re-use will require little or no treatment at all. The second treatment option is the recycle option. This option provides high quality water for re-use or discharge to the environment using a recycling technology. The credibility of this option is heavily dependent on its ability to recycle almost all of the wastewater with little or none left for disposal or treatment. The third option is well disposal. This entails disposing all of the wastewater into a deep formation. The software used for building the model is called @Risk. The model’s costs were estimates from recent research to capture the risks and uncertainties associated with wastewater disposal. The model revealed that re-use option remains the most cost effective treatment method to reduce overall water management cost in the Marcellus. The re-use option is most viable when a hydraulic fracturing schedule is continuous (no significant storage requirement) and infrastructure is available to transport wastewater from one fracturing operation to the other. The recycle option is the second most viable disposal option. This option is most effective when the hydraulic fracturing schedule is staggered in both time and distance because distilled water from recycling facilities can be easily discharged into the environment or stored. The most unfavorable option for wastewater management at the Marcellus is the well disposal option due to the high cost of trucking wastewater to disposal wells in neighboring states or counties. It also requires the highest usage of fresh water. A well disposal option can be favorable at the onset of a hydraulic fracturing schedule when there are low levels of infrastructure, hydraulic fracturing programs are not continuous or localized in proximity, and the volume of wastewater does not exceed the capacity for injection. In this case, disposal wells can be more favorable than recycle or re-use if they are in close proximity to drilling sites. / text
|
306 |
Avskiljning av ammoniumkväve och fosfatfosfor i reaktiva filtermaterial : skak- och kolonnförsökPoll, Katarina January 2005 (has links)
<p>In Sweden more than 400 000 private households have not yet sufficient wastewater purification. These effluent is considered as an increasing problem and many onsite purification methods have been studied. In this investigation, the method of reactive bed filters have been tested by column and batch experiments. Five different kinds of filter materials with reactive surfaces have been studied concerning their capacity to absorb ammonium and phosphorus from wastewater. The materials that were examined are Filtra N, wollastonite Filtra P, blast furnace slag and Polonite®. The first two materials were examined for their capacity to remove ammonium, and the others for their phosphorus removal capacity.</p><p>Ten columns were used, two for each material. A synthetic solution with the ammonium and phosphate concentration similar to that of domestic wastewater (NH4-N 30 mg/l; PO4-P 5 mg/l) were pumped to the columns under two flow regimes. Five columns were continuously saturated with solution and the other five columns were saturated under three one hour periods a day The solution was pumped three times a day to the columns at a volume equal to the pore volume of each material. The objective of the batch experiment was to find out how variations in pH-value and concentration of the nutrients influenced the sorption capacity of the materials. The result was then used for modelling in the computer program Visual Minteq to determine the probability of precipitation of known compounds.</p><p>Results from the column experiment showed that sorption of phosphorus in both saturated columns and intermittently saturated columns were 96 % or more for blast furnace slag, Filtra P and Polonite®. Filtra N showed the best ammonium sorption with 92 %. Sorption of ammonium was much better in periodically saturated columns for the material wollastonite. The wollastonite used in this experiment showed a higher phosphorus sorption capacity than expected. A possible explanation could be that the easy weathering of Ca-silicate compounds favoured the sorption of phosphorus. Results from Visual Minteq modelling showed that the probability of calcite formation in Filtra P and Polonite® are very likely. The two materials had high pH-values and the calcite was most likely formed at values of pH > 10. Hydroxyapatite is the most common precipitation when phosphorus sorption occurs and is suggested to be formed in wollastonite.</p> / <p>Mer än hälften av Sveriges enskilda avlopp bedöms inte uppfylla kraven i miljöbalken på längre gående rening än slamavskiljning. Dessa står för en betydande del av fosfor- och kväveutsläppen till hav, sjöar och vattendrag. Åtskilliga systemlösningar utreds, men i denna rapport har filter med fosfor- och kvävesorberande förmågor testats eller s.k. reaktiva filter. Mineraliska filter som ingått i studien är Filtra N, wollastonit, Filtra P, hyttsand och Polonite®. De två första filtren studerades speciellt på deras förmåga att avskilja ammonium och de tre övriga främst på deras fosforavskiljnings förmåga.</p><p>Kolonnförsök utfördes med tio kolonner där fem belastades med mättat flöde och de övriga med intermittent mättat flöde. Kolonnuppsättningen var två kolonner per filtermaterial med vardera olika flödesförhållanden. Belastningen på kolonnerna sattes till betydligt högre än traditionell infiltration/markbädd. Ett artificiellt avloppsvatten användes och tillreddes med en koncentration av kväve (NH4-N) på 30 mg/l och fosforkoncentration (PO4-P) på 5 mg/l. De valda koncentrationerna efterliknar ett vanligt hushållsspillvatten. Skakförsök utfördes för att undersöka sorptionsförmågan hos de olika mineraliska filtren där vikten låg på hur koncentrationen av näringsämnena och pH påverkar sorptionen. Resultaten från skakförsöken utvärderades med jämviktsmodellen Visual Minteq. Sannolikheten att kända utfällningar bildas studerades.</p><p>Resultaten från kolonnförsöken visade att hyttsand, Filtra P och Polonite® gav bäst fosforavskiljning med över 96 % för båda flödesregimerna. Filtra N var den bästa ammoniumavskiljaren med över 92 %. Wollastonit hade en bättre avskiljning med intermittent mättat flöde med 65 % jämfört med 11 % för mättat flöde. En intressant iakttagelse var att wollastonit hade en bättre fosforavskiljning än ammoniumavskiljning med ca 60 % för båda flödena. Det kan bero på att filtret innehåller lättvittrade Ca-silikatföreningar som ökar fosfatavskiljningen. Skakförsöken resulterade i att för Filtra P, hyttsand och Polonite® sorberades all tillsatt fosfat. Filtra N visade samma resultat som i kolonnförsöken med över 92 % sorption. Endast fosfat sorberades vid försök med tillsättning av både fosfat och ammonium till hyttsand och wollastonit. Vid modellering i Visual Minteq finns det en viss sannolikhet att kalcit bildats i Filtra P och Polonite® p g a deras höga pH, kalcit fälls ut vid pH > 10. Hydroxyapatit som är den vanligaste utfällningen av kalciumfosfat vid avskiljning av fosfor bildades mycket troligt i wollastonit.</p>
|
307 |
Utvärdering av anaerob behandling av hushållsspillvatten och tekniker för efterbehandling / Evaluation of Anaerobic Treatment of Municipal Wastewater and Techniques for Post-TreatmentGannholm, Catharina January 2005 (has links)
<p>The continuous process of urbanization results in demands on research and development for ecological and sustainable city development. Because of this, the current systems for wastewater treatment may have to be improved. In order to evaluate new technologies for municipal wastewater treatment, a development project has been initiated for the new district Hammarby Sjöstad in Stockholm. The project is lead by the company Stockholm Water. High environmental standards have been put up for the district, as it must be twice as good as an ordinary new district. To achieve this goal, a new water treatment plant is planned to be build.</p><p>In the testing facility Sjöstadsverket, several new water treatment processes for municipal wastewater are being evaluated. This thesis is concerned with the evaluation of one of these processes. The process in question is anaerobic and consists of the following steps: pre-treatment, UASB (Upflow Anaerobic Sludge Blanket), aerobic polishing for nitrogen reduction, a drum filter and reverse osmosis. The evaluation is performed by analysis of water sample taken from the whole process.</p><p>It is difficult to make any conclusions about the process as a whole, since not all of the individual parts have been in use at the same time. The production of gas in the UASB system has been quite low. The cause of this is probably that gas is dissolved in the effluent water. The aerobic polishing is sensitive and it will need adjustments of the pH-value in order to treat the water as planned. The use of chemical precipitation of phosphorus over the drum filter does not reduce the amount of phosphorus below the desired level. Furthermore, the demands on the treated water cannot be reached with the use of reverse osmosis, at least not in its current implementation.</p> / <p>Den allt större inflyttningen till städer och tätorter har gjort att behoven av forskning och utveckling kring ekologiskt hållbar stadsutveckling har ökat. Detta innebär i sin tur att det befintliga systemet för avloppsvattenrening kan behöva förändras. För att utvärdera ny och delvis obeprövad teknik inom behandling av avloppsvatten har ett utvecklingsprojekt startat för Stockholms nya stadsdel Hammarby Sjöstad. Stockholm Vatten har fått i uppgift att leda projektet. För stadsdelen har ett antal ambitiösa miljömål formulerats vilka i korthet innebär att stadsdelen skall vara dubbelt så bra som övrig nybyggnation. För att klara dessa miljömål görs förberedelser för ett eget reningsverk i stadsdelen.</p><p>I Stockholm Vattens pilotanläggning Sjöstadsverket utvärderas en rad olika behandlingslinjer för rening av avloppsvatten från hushåll och syftet med detta examensarbete är att utvärdera en av dessa försökslinjer. Försökslinjen är anaerob och består av försedimentering, UASB (Upflow Anaerobic Sludge Blanket), ett biologiskt poleringssteg för kvävereduktion, trumfilter samt omvänd osmos (RO). Utvärderingen har gjorts genom analyser av vattenprover längs försökslinjen.</p><p>Det är svårt att dra några slutsatser om linjen som helhet eftersom inte alla ingående komponenter varit igång samtidigt så som planerat. Gasproduktionen över UASB-systemet har varit relativt låg och det beror troligen på att en del av gasen löser sig i det utgående vattnet. Den biologiska poleringen för kvävereduktion är en känslig process som kommer att behöva pH-justeras för att klara att behandla vattnet från Sjöstaden. Med nuvarande utformning av anläggningen kan man inte med kemisk fällning av fosfor över trumfiltret komma ner under utsläppsgränserna. Kraven på utgående vatten kan inte heller nås med den RO som finns på Sjöstadsverket idag.</p>
|
308 |
Master or Engineering Management Report. Lessons Learned, Disaster Mitigation Guidelines.Johnston, Courteney January 2012 (has links)
The Master of Engineering Management Project was sponsored by the Canterbury Earthquake Recovery Authority (CERA) and consisted of two phases:
The first was an analysis of existing information detailing the effects of hazardous natural events on Canterbury Lifeline Utilities in the past 15 years. The aim of this “Lessons Learned” project was to produce an analysis report that identified key themes from the research, gaps in the existing data and to provide recommendations from these “Lessons Learned.”
The Second phase was the development of a practical “Disaster Mitigation Guideline” that outlined lessons in the field of Emergency Sanitation. This research would build upon the first stage and would draw from international reference to develop a guideline that has practical implementation possibilities throughout the world.
|
309 |
Elucidation of Dissolved Organic Matter Interactions with Model Contaminants of Emerging ConcernHernandez Ruiz, Selene January 2011 (has links)
This study examined the interaction of model cationic, neutral and anionic endocrine disrupting compounds, pharmaceuticals and personal care products (EDC/PPCPs) with bulk and fractionated freshwater and waste water dissolved organic matter (DOM). The chemical composition of the freshwater DOM (Suwannee River, GA, SROM) proved to be rich in plant-derived hydrophobic aromatics, while the wastewater DOM (WWOM) contained a greater proportion of microbial biomolecular products, presumably resulting mainly from human waste. Studies focused on the fluorescence quenching of excitation-emission matrices (EEMs) of WWOM indicated that interaction with bis-phenol A (BPA), carbamazepine (CBZ), and ibuprofen (IBU) occurred preferentially with soluble protein-like and fulvic acid-like constituents. However, upon introduction to bulk SROM, BPA and CBZ were observed to quench humic acid-like regions of the EEMs, while negatively charged ibuprofen preferentially quenched the protein-like and fulvic acid components irrespective of DOM source and/or fraction. Despite this evidence of EDC/PPCP interactions with both DOM types, the strength of bonds formed was generally not sufficient to preclude full recovery and quantification of all three contaminants by liquid chromatography tandem mass spectrometry (LC-MSMS). An important exception, however, was for the hydrophilic acid fraction (HiA) of both DOM types, whose apparent bonding to cationic CBZ and anionic IBU significantly diminished LC-MSMS recovery. Thus, water sources rich in HiA character might produce a concentration underestimation of ionized EDC/PPCPs even with the use of sophisticated instruments such as LC-MSMS.The results of this research are consistent with the evolving ""supramolecular"" theory of natural organic matter, which postulates that organic matter itself is comprised of fragments of partially degraded biomolecules that are aggregated into ""supramolecular"" structures of apparent higher molar mass via relatively weak electrostatic, hydrophobic, and van der Waals interaction. Our findings suggest that EDC/PPCP contaminants, which comprise many of the same functional groups as waste water and freshwater DOM, may be incorporated into such DOM supramolecular structures, likely via the same types of intermolecular bonding, when they are present in natural waters under environmentally-relevant conditions.
|
310 |
Natural wetlands as additional wastewater treatment for phosphorus removal in First Nations communities in ManitobaKarpisek, Vanja 13 January 2017 (has links)
At least 60% of First Nation communities in Manitoba, including the Lake Manitoba First Nation, are in wetland areas.47% of First Nations communities in Manitoba served by facultative lagoons failed to achieve the total phosphorus (TP) concentration of 1 mg/L in proposed regulations for effluent discharge into the environment. The Lake Manitoba First Nation community facultative lagoon system treats domestic wastewater and seasonally discharges effluent into a wetland that connects to Lake Manitoba. This research was performed to estimate phosphorus removal efficiency through the natural wetland during the vegetation growing season.The average TP concentration reduction utilizing the natural treatment area of 1.3 ha was more than 70%, achieving the desired total phosphorus below 1 mg/L.These short-term study results indicate the potential of natural wetland treatment applications under cold continental climate conditions, as an effluent polishing step to satisfy regulatory requirements for phosphorus reduction in smaller First Nations communities. / February 2017
|
Page generated in 0.0602 seconds