• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • Tagged with
  • 32
  • 32
  • 32
  • 32
  • 18
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A critical investigation into the effectiveness of soil and water remediation efforts in Steel Valley, Vanderbijlpark

Ahenkorah, Emmanuel 08 1900 (has links)
Post-remediation soil, ground and surface water monitoring is essential to assess the effectiveness of remediation efforts undertaken to eliminate or minimize the risk of pollution to human health and valuable ecosystems. In that regard, comparison of pollution levels pre- and post-remediation is an effective way of evaluating the effectiveness of the remediation techniques used. Thus, this study sought to measure concentrations of pollutants in the soil, ground and surface water post remediation in Steel Valley, Vanderbijlpark and compare them to concentration levels prior to remediation, as well as compare them to internationally accepted standards with respect to risk to humans and the environment. Water samples were collected from three locations within the study site, in both the dry and rainy seasons and their physio-chemical and organic properties were tested. Soil samples were collected from six different locations within the study site and analysed for metal concentrations. The data was compared against that of the Iron and Steel Corporation (ISCOR) Vanderbijlpark Environmental Master Plan (EMP), water and soil guidelines of the World Health Organization (WHO) as well as South African water and soil guidelines. The study found that groundwater is generally safe for domestic use but Aluminium (Al), Iron (Fe) and Manganese (Mn) concentrations were above South African water quality guideline levels – with their concentrations ranging from 0.54 to 0.91 mg/L, 1.01 to 1.86 mg/L and 0.24 to 0.53 mg/L respectively. There were no traces of organic pollution in the water samples. Soil samples had levels of Al ranging from 1106 mg/kg to 1 3621 mg/kg, Mn concentrations in the range of 202.8 to 966.4 mg/kg and Fe ranging from 1 1587 to 23 201 mg/kg. Thus, water and soil at the selected sites are safe in terms of physico-chemical and organic quality. Natural attenuation should be able, over time, to further reduce the levels of parameters that are currently above the target range. Thus, there has been considerable reduction in pollutant concentrations, but as this study was limited in scope, additional research is needed to verify the results. / Environmental Sciences / M. Sc. (Environmental Science)
22

Quality indices of the final effluents of two sub-urban-based wastewater treatment plants in Amathole District Municipality in the Eastern Cape Province of South Africa

Gcilitshana, Onele January 2014 (has links)
Worldwide, water reuse is promoted as an alternative for water scarcity, however, wastewater effluents have been reported as possible contaminants to surface water. The failure of some wastewater treatment processes to completely remove organic matter and some pathogenic microorganisms allows them to initiate infections. This manifests more in communities where surface water is used directly for drinking. To assess water quality, bacteria alone cannot be used as it may be absent in virus-contaminated water. This study was carried out to assess the quality of two wastewater treatment plant effluents from the Eastern Cape Province of South Africa. Physicochemical parameters and microbiological parameters like faecal coliforms, adenovirus, rotavirus, hepatitis A virus, norovirus and enterovirus were evaluated over a projected period of one year. Physicochemical parameters were measured on site using multiparameters, faecal coliforms enumerated using culture-based methods and viruses are detected using both conventional and real-time PCR. Physicochemical parameters like electrical conductivity, turbidity, free chlorine and phosphates were incompliant with the standards set by the Department of Water affairs for effluents to be discharged. Faecal coliform counts were nil for one plant (WWTP-R) where they correlated inversely (P < 0.01) with the high free chlorine. For WWTP-K, faecal coliforms were detected in 27% of samples in the range of 9.9 × 101 to 6.4× 104 CFU/100ml. From the five viruses assessed, three viruses were detected with Rotavirus being the most abundant (0-2034176 genome copies/L) followed by Adenovirus (0–275 genome copies/L) then Hepatitis A virus (0–71 genome copies/L) in the WWTP-K while none of the viruses was detected in WWTP-R. Species B, species C and Adv41 serotypes were detected from the May 2013 and June 2013 samples where almost all parameters were incompliant in the plant. The detection of these viruses in supposedly treated effluents is suggestive of these being the sources of contamination to surface water and therefore renders surface waters unsafe for direct use and to aquatic life. Although real-time PCR is more sensitive and reliable in detection of viruses, use of cell-culture techniques in this study would have been more efficient in confirming the infectivity of the viruses detected, hence the recommendation of these techniques in future projects of this nature.
23

Metal bioaccumulation and precious metal refinery wastewater treatment by phoma glomerata / Bronwyn Moore Masters Thesis

Moore, Bronwyn Ann 18 March 2008 (has links)
The biosorption of copper, nickel, gold and platinum from single metal aqueous solutions by the nickel hyperaccumulator Berkheya coddii plant biomass was investigated. Potentiometric titrations of the biomass and determination of optimal sorption pH for each metal showed that nickel ions were released from the biomass into solution. The presence of free nickel ions interfered with the uptake of the other three metals and further biosorption investigations were discontinued. Three fungal isolates found colonising metal solutions were cultured and screened for their ability to remove 50 mg.l⁻¹ of copper, nickel, gold and platinum from solution and to survive and grow in precious metal refinery wastewaters. One isolate was selected for further studies based on its superior metal uptake capabilities (35 and 39 mg.l⁻¹ of gold and platinum, respectively) and was identified as Phoma glomerata. Copper, nickel, gold and platinum uptake studies revealed that nickel and gold were the most toxic metal ions, however, toxicity was dependent on pH. At pH 6 more biomass growth was achieved than at lower pH values and metal uptake increased by 51 and 17 % for copper and nickel, respectively. In addition, the production of extracellular polymeric substances played a role in base metal interaction. Precious metals were observed to be preferentially removed from solution, complete removal of gold and platinum was observed at all initial pH values, 89 % of copper was bioaccumulated at an initial metal concentration of 55 mg.l⁻¹ (pH 6) and only 23 % of nickel was removed from solution under the same conditions. Metal bioaccumulation was confirmed through transmission electron microscopy and micro particle induced X-ray emission. The effect of P. glomerata immobilised in a packed bed reactor on precious metal refinery wastewaters was investigated. It was found that the fungal isolate was not able to remove the high salt and chemical oxygen demand concentrations found in the wastewaters, however due to its ability to survive and grow in undiluted wastewater and remove metal ions from solution it may be utilised as a metal detoxification step in the treatment process train. / PDFCreator Version 0.9.0 / AFPL Ghostscript 8.53
24

Surveillance of invasive vibro species in discharged aqueous efflents of wastewater treatment plants in the Eastern Cape province of South Africa

Igbinosa, Etinosa Ogbomoede January 2010 (has links)
Vibrio infections remain a serious threat to public health. In the last decade, Vibrio disease outbreaks have created a painful awareness of the personal, economic, societal, and public health costs associated with the impact of contaminated water in the aquatic milieu. This study was therefore designed to assess the prevalence of Vibrio pathogens in the final effluents of wastewater treatment plants (WWTPs) in the Eastern Cape Province, as well as their abilities to survive the treatment processes of the activated sludge system either as free cells or as plankton-associated entities in relation to the physicochemical qualities of the effluents. Three wastewater treatment facilities were selected to represent typical urban, sub-urban and rural communities, and samples were collected monthly from August 2007 to July 2008 from the final effluent, discharge point, 500 meter upstream and downstream of the discharge points and analysed for physicochemical parameters, Vibrio pathogens prevalence and their antibiogram characteristics using both culture based and molecular techniques. Physicochemical parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), nitrate, nitrite and orthophosphate levels. Unacceptably high levels of the assayed parameters were observed in many cases for COD (<10 - 1180 mg/l), nitrate (0.08 - 13.14 mg NO3- as N/l), nitrite (0.06 - 6.78 mg NO2- as N/l), orthophosphate (0.07-4.81 mg PO43- as P/l), DO (1.24 - 11.22 mg/l) and turbidity (2.04 -159.06 NTU). Temperature, COD and nitrite varied significantly with season (P < 0.05), while pH, EC, salinity, TDS, COD, and nitrate all varied significantly with sampling site (P < 0.01; P < 0.05). In the rural wastewater treatment facility, free-living Vibrio densities varied from 0 to 3.45 × 101 cfu ml-1, while the plankton-associated Vibrio densities vary with plankton sizes as follows: 180 μm (0 – 4.50 × 103 cfu ml-1); 60 μm (0 – 4.86 × 103 cfu ml-1); 20 μm (0 – 1.9 × 105 cfu ml-1). The seasonal variations in the Vibrio densities in the 180 and 60 μm plankton size samples were significant (P < 0.05), while the 20 μm plankton size and free-living vibrios densities were not. Molecular confirmation of the presumptive vibrios isolates revealed V. fluvialis (36.5 percent), as the predominant species, followed by V. vulnificus (34.6 percent), and V. parahaemolyticus (23.1 percent), and V. metschnikovii (5.8 percent) (detected using only API 20 NE), suggesting high incidence of pathogenic Vibrio species in the final effluent of the wastewater facility. Correlation analysis suggested that the concentration of Vibrio species correlated negatively with salinity and temperature (P < 0.001 and P < 0.002 respectively) as well as with pH and turbidity (P < 0.001), in the final effluent. Population density of total Vibrio ranged from 2.1 × 101 to 4.36 × 104 cfu ml-1 and from 2.80 ×101 to 1.80 × 105 cfu ml-1 for the sub-urban and urban communities treatment facilities respectively. Vibrio species associated with 180 μm, 60 μm, and 20 μm plankton sizes, were observed at densities of 0 - 1.36 × 103 cfu ml-1, 0 - 8.40 × 102 cfu ml-1 and 0 - 6.80 × 102 cfu ml-1 respectively at the sub-urban community‘s WWTP. In the urban community, counts of culturable vibrios ranged from 0 - 2.80 × 102 cfu ml-1 (180 μm); 0 - 6.60 × 102 cfu ml-1 (60 μm) and 0 -1.80 × 103 cfu ml-1 (20 μm). Abundance of free-living Vibrio species varied between 0 and the orders of 102 and 103 cfu ml-1 in the sub-urban and urban communities WWTPs respectively. Molecular confirmation of the presumptive vibrios isolates revealed the presence of V. fluvialis (41.38 percent), V. vulnificus (34.48 percent), and V. parahaemolyticus (24.14 percent) in the sub-urban community effluents. In the urban community V. fluvialis (40 percent), V. vulnificus (36 percent), and V. parahaemolyticus (24 percent) were detected. There was no significant correlation between Vibrio abundance and season, either as free-living or plankton-associated entities, while Vibrio species abundance correlated positively with temperature (r = 0.565; P < 0.01), salinity and dissolved oxygen (P < 0.05). Turbidity and pH showed significant seasonal variation (P < 0.05) in both locations. The Vibrio strains showed the typical multi-antibiotic-resistance of an SXT element. They were resistant to sulfamethoxazole (Sul), trimethoprim (Tmp), cotrimoxazole (Cot), chloramphenicol (Chl) and streptomycin (Str), as well as other antibiotics such as ampicillin (Amp), penicillin (Pen), erythromycin (Ery), tetracycline (Tet), nalidixic acid (Nal), and gentamicin (Gen). The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; tetA, strB, floR, sul2 blaP1, for tetracycline, streptomycin, chloramphenicol, sulfamethoxazole and β-lactams respectively. A number of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. This study revealed that there was an adverse impact on the physicochemical characteristics of the receiving watershed as a result of the discharge of inadequately treated effluents from the wastewater treatment facilities. The occurrence of Vibrio species as plankton-associated entities confirms the role of plankton as potential reservoir for this pathogen. Also the treated final effluents are reservoirs of various antibiotics resistance genes. This could pose significant health and environmental risk to the biotic component of the environment including communities that rely on the receiving water for domestic purposes and may also affect the health status of the aquatic milieu in the receiving water. There is need for consistent monitoring programme by appropriate regulatory agencies to ensure compliance of the wastewater treatment facilities to regulatory effluent quality standards.
25

Prevalence of listeria pathogens in effluents of some wastewater treatment facilities in the Eastern Cape province of South Africa

Odjadjare, Emmanuel Erufuare Onogwuwhenya January 2010 (has links)
Wastewater discharges may contain health compromising pathogens and carcinogenic and/or chemical substances that could compromise the public health and impact negatively on the environment. The present study was conducted between August 2007 and July 2008 to evaluate the Listeria abundance (as free-living and plankton associated species) and physicochemical qualities of the final effluents of three wastewater treatment facilities in the Eastern Cape Province of South Africa selected to represent typical urban, peri-urban and rural communities and the impact of the discharged final effluents on their respective receiving watershed, as well as to elucidated the in vitro antibiotic susceptibilities and resistance genes profile of Listeria species isolated from the final effluents. The suitability of the secondary effluent of the urban treatment facility (as a case study) for use in agriculture and aquaculture with reference to recommended standards was also determined. Wastewater samples were collected from the raw sewage, secondary effluent, final treated effluent, discharge point, 500 m upstream discharge point, and 500 m downstream discharge point from all three locations on a monthly basis throughout the study period. Listeria abundance in the final effluents and the receiving watersheds varied between 2.9× 100 and 3.52 × 105cfu/ml across the sampled locations. Free-living listerial density across the sampled locations ranged between 0 and 3.2 × 103cfu/ml while counts of Listeria species attached to large (180 μm) planktons varied from 0 to 1.58 × 105 cfu/ml and those of the 60 and 20 μm categories were in the range of 0 to 1.32 × 103 cfu/ml and 0 to 2.82 × 105 cfu/ml respectively. Listeria abundance did not vary significantly with location and season; there was however, significant (P < 0.05; P < 0.01) variance in Listeria abundance with plankton sizes across the locations. Free-living Listeria species were more abundant in the rural and urban xii communities than plankton attached Listeria species; whereas the reverse was the case in the peri-urban community. Prevalence of Listeria in terms of total counts was 100 percent across all sampled locations. Free-living Listeria species showed prevalence ranging from 84-96 percent across the sampling locations; while Listeria species attached to large (180 μm) planktons exhibited prevalence ranging from 75 percent to 90 percent. The prevalence of medium-sized (60 μm) plankton associated Listeria species varied between 58 percent and 92.5 percent; whereas those of Listeria species attached to small (20 μm) planktons ranged from 65-100 percent across all three communities. Listeria prevalence was generally a reflection of the turbidity of the water system, with free-living Listeria species being more prevalent than plankton associated cells in the relatively less turbid rural and urban waters compared to the more turbid peri-urban waters where plankton attached cells were more prevalent in comparison with their free living counterparts The final treated effluent quality fell short of recommended standards for turbidity, chemical oxygen demand and phosphate across all three communities. In addition, the final effluent of the rural treatment plant also fell short of recommended standard for NO3, while that of the urban treatment plant did not comply with acceptable limits for dissolved oxygen and nitrite. Other physicochemical parameters were compliant with set standards after treatment. An inverse relationship was observed between chlorine residual and listerial density across the sampled facilities; the effect of chlorine was however not enough to eliminate the pathogen from the water systems. At the urban treatment plant and its receiving watershed, pH, temperature, EC, turbidity, TDS, DO, and nitrate varied significantly with season and sampling point (P < 0.05; P < 0.01). Salinity also varied significantly with sampling point (P < 0.01), while COD and nitrite varied significantly with season (P < 0.05). Although, the treated effluent fell within recommended water quality standard for pH, TDS, nitrate and nitrite, it fell short of stipulated standards for other parameters. Whereas the microbial quality of the secondary treated effluent at this (urban) facility fell short of recommended standard after secondary treatment, its physicochemical quality were generally compliant with recommended standards for reuse wastewater in agriculture and aquaculture. Listeria pathogens isolated from effluents of the rural wastewater facility were sensitive to 11 (55 percent) of the 20 test antibiotics, and showed varying (7-71 percent) levels of resistance to 8 antibiotics; whereas those isolated from the peri-urban community showed sensitivity to 6 (30 percent) of the 20 test antibiotics, and varying (6-94 percent) levels of resistance to 12 antibiotics; while the urban effluent isolates were sensitive to 3 (15 percent) of the 20 test antibiotics, and showed varying (4.5-91 percent) levels of resistance to 17 antibiotics. Multiple antibiotic resistances involving 78.5-100 percent of isolates and antibiotics combination ranging from 2-10 antibiotics was observed across the sampled locations. Penicillin G and ampicillin showed remarkably high (64-91 percent) phenotypic resistance across the three sampled facilities. Other antibiotics, to which isolates showed significant resistance, were linezolid (22-88 percent); erythromycin (43-94 percent) and sulphamethoxazole (7-94 percent). Two of the 14 Listeria strains isolated from the rural effluents were positive for ereA and sul1 antibiotic resistance genes; while sulII genes were detected in five of the 23 Listeria isolates from the urban effluent and none was detected in isolates from the peri-urban community. The presence of antimicrobial resistance genes in the isolates did not correlate with phenotypic antibiotic resistance. The current study demonstrated that Listeria pathogens easily survived the activated sludge treatment process as free-living and plankton attached entities and suggests that municipal wastewater treatment plants are a significant source of multiple resistant Listeria pathogens in the South African aquatic milieu. While the physicochemical quality of the urban final effluent suggests that it is a major source of pollution to the receiving watershed, the secondary effluent quality demonstrated a great potential for use in agriculture and aquaculture.
26

The treatment of platinum refinery wastewater using an evaporative crystallizer

Luvuno, Jabulani Heavenson 03 1900 (has links)
South Africa is a water scarce country. The expansion of the industrial, mining, and agricultural sectors to meet the needs of South Africa’s growing population requires more water. There is therefore an urgent need to develop effective wastewater treatment processes in order to recover and reuse water. This dissertation presents the treatment of an acidic wastewater stream from a platinum refinery which at present is being disposed of by contract with a waste disposal company. The major concern in treating the acid effluent stream is the high concentration of sodium ions (18 200 mg/l) and chloride ions (104 900 mg/l). The precipitation process is used to treat wastewater, but ultimately it generates more secondary waste as a sludge. The other process that is used to treat wastewater is reverse osmosis (RO). RO is usually preferred in the last stage of the treatment because the process is more expensive as membranes need to be replaced regularly. The approach used in this research focuses on evaporating liquid, consequently concentrating the remaining solution until the ions in the solution crystallize. The liquid produced is recycled back into the platinum plant for reuse, and the remaining salt crystals are collected as the useful product. The proposed water treatment process produces dilute hydrochloric acid as the condensate and a crystallized sodium chloride rich residue. The refinery is currently disposing of around 20 000 l/day of wastewater to landfills. The proposed treatment process can recover half of the volume of the wastewater stream to the refinery, helping reduce the fresh water consumption of the process by 10 000 l/day. Furthermore, this will reduce the volume of wastewater going to disposal by a half, namely only 10 000 l/day will need to be disposed of. The amount of Cl that can be recovered is variable and depends on the quantity of chloride in the wastewater. In the two samples processed the recovery was between a 2,5 w% and 10,7 wt% aqueous HCl solution. This corresponds to a saving of between 250 to 1000 kg/day of HCl. As the concentration of the recovered solution is variable, the recycling process would need to monitor the composition of the recycled stream and make up the acid concentration to some fixed value for reuse in the prices. The production of a dilute hydrochloric acid stream should be particularly attractive to the platinum refinery as the operation of the refinery requires hydrochloric acid as a feed. Thus, by recycling the wastewater, the refinery would reduce the volume of wastewater to be disposed of thereby reducing the cost of disposal of the waste while simultaneously reducing the cost of buying fresh hydrochloric acid. The proposed recovery of liquid and recycling it back to the refinery, will also reduce the environmental impact of the refinery, and very importantly in a water scarce country, reduce the freshwater consumption of the process. / Physics / M. Sc. (Physics)
27

Sustainable cities water investment and management for improved water service delivery : a case study of South African metropolitan municipalities

Mukwarami, Silas January 2021 (has links)
Thesis (Ph.D. Commerce (Accounting)) -- University of Limpopo, 2021 / Despite South Africa's progress towards increasing investments in water management (IWM), water services delivery challenges (WSDCs) are prevalent. However, this further proves that focusing on only increasing (IWM) without addressing sustainability practices is not the only lasting solution. Therefore, the study examined the relationship between Sustainable Water Infrastructure (SWI) factors and IWM in South African metropolitan municipalities (SAMMs) to explore an alternative way of dealing with WSDCs. The study considered 278 municipalities in South Africa as the population. Furthermore, the study purposively selected eight (8) SAMMs, and employed quantitative content analysis to collect secondary data (2009 to 2019) from the various internet-based data sources. The data analysis procedure involved multivariate regression analysis through which Ordinary Least Squares and Feasible Generalised Least Squares produced results for the study. The study results suggest that only environmental management practices have had a positive but insignificant effect on IWM, whereas social, governance and economic factors have adversely and insignificantly influenced IWM. Overall, the relationship between SWI factors and IWM in SAMMs has turned out to be neutral. The results further expose the metropolitan councils' lack of proactive strategies to deal with the SWI factors that impede progressive efforts towards addressing an underinvestment gap and the worsening WSDCs. Since the study pioneered in the water management narrative, it has initiated new approaches to addressing WSDCs in the South African context. The study results present important implications for water service authorities and policymakers in South Africa as the narrative concerning the development of sustainable cities continues to gain momentum in urban development discourses. The study further recommends that SAMMs adhere to guidelines proposed in the framework to ensure that created investment opportunities due to good SEGE practices can enhance IWM. Lastly, further studies in this field of study are fundamental in exploring various approaches to addressing WSDCs. / Mpumalanga Department of Education (MDE)
28

A water resources quality assessment case study involving a package plant in Mogale city

De Bruyn, Karin 11 1900 (has links)
Inadequately treated wastewater effluent is harmful to the receiving aquatic environment. Water-borne chemicals and microbial pathogens pose a health risk to anyone living downstream from sewage treatment facilities. This study assessed the effluent from a package plant with a design capacity of 48kℓ/24 hours, servicing 12 household units and a restaurant in Mogale City. Over a 12 month period, fortnightly water samples were collected from ten selected sites including two boreholes, a river and two dams. Standard parameters including physical (pH, EC, temperature, DO and SS), chemical (nutrient concentration) and biological (bacterial counts) were analysed using handheld meters, standard membrane filter techniques and colorimetric methods. One borehole was affected by pathogen and nitrate runoff from an adjacent poultry farm. If regularly monitored, the package plant effectively removed microbes (most samples contained 0 cfu/100mℓ) but above limit COD, ammonia and phosphate was released in the effluent (with maximum values of 322 mg/ℓ, 42.52 mg/ℓ and 7.18 mg/ℓ, respectively). Generally, river and dam water at the site was of good quality. / Environmental Science / M. Sc. (Environmental Science)
29

The beneficiation of carbonate rich coal seam water through the cultivation of Arthrospira Maxima (Spirulina)

Grove, Francois Michael 06 1900 (has links)
Coal seams are commonly associated with poor quality water that requires treatment. Water treatment can be very expensive and can severely affect the profitability of mining projects. This study investigated the potential cultivation of Arthrospira maxima (Spirulina) in coal seam water to beneficiate coal seam water in order to effectively offset the water treatment cost. The study was conducted in Northern South Africa and formed part of a larger Coal Seam Water Beneficiation Project (CSWBP). The study consisted of laboratory based Flask Studies and outdoor High Rate Algal Pond Studies. The Flask Studies that were carried out in the on-site field laboratory, found that the coal seam water could provide a suitable medium for Spirulina cultivation. In addition, it was found that the optimal pH for the selected strain ranged between 9 - 10.5 and that the addition of excess iron, up to 100 times the concentration found in defined growth media such as Schlösser’s, to the culture media could enhance productivity. The High Rate Algal Pond Studies (HRAP) were carried out over a period of 18 months. The studies showed that the coal seam water at the CSWBP is a valuable resource that can reduce media costs by 50% without affecting productivity. In a study encompassing 334 days it was shown that heating the culture through plate heat exchangers would result in a significant increase in productivity and a heated productivity of 19.86 g/m2/day was recorded. An unheated productivity of 14.11 g/m2/day was recorded. Therefore, it was found that it would be economically feasible to beneficiate coal seam water found at the CSWBP through the cultivation of Arthrospira maxima (Spirulina). / Environmental Sciences / M. Sc. (Environmental Science)
30

A water resources quality assessment case study involving a package plant in Mogale city

De Bruyn, Karin 11 1900 (has links)
Inadequately treated wastewater effluent is harmful to the receiving aquatic environment. Water-borne chemicals and microbial pathogens pose a health risk to anyone living downstream from sewage treatment facilities. This study assessed the effluent from a package plant with a design capacity of 48kℓ/24 hours, servicing 12 household units and a restaurant in Mogale City. Over a 12 month period, fortnightly water samples were collected from ten selected sites including two boreholes, a river and two dams. Standard parameters including physical (pH, EC, temperature, DO and SS), chemical (nutrient concentration) and biological (bacterial counts) were analysed using handheld meters, standard membrane filter techniques and colorimetric methods. One borehole was affected by pathogen and nitrate runoff from an adjacent poultry farm. If regularly monitored, the package plant effectively removed microbes (most samples contained 0 cfu/100mℓ) but above limit COD, ammonia and phosphate was released in the effluent (with maximum values of 322 mg/ℓ, 42.52 mg/ℓ and 7.18 mg/ℓ, respectively). Generally, river and dam water at the site was of good quality. / Environmental Science / M. Sc. (Environmental Science)

Page generated in 0.1443 seconds