• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 9
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 45
  • 37
  • 28
  • 27
  • 23
  • 22
  • 19
  • 16
  • 16
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Solar energy conversion by photoelectrochemical processes

Hassan, Ibrahim January 2011 (has links)
No description available.
22

Nanostructured materials for photoelectrochemical hydrogen production using sunlight.

Glasscock, Julie Anne, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Solar hydrogen has the potential to replace fossil fuels with a sustainable energy carrier that can be produced from sunlight and water via &quotewater splitting&quote. This study investigates the use of hematite (Fe&sub2O&sub3) as a photoelectrode for photoelectrochemical water splitting. Fe&sub2O&sub3 has a narrow indirect band-gap, which allows the utilization of a substantial fraction of the solar spectrum. However, the water splitting efficiencies for Fe&sub2O&sub3 are still low due to poor absorption characteristics, and large losses due to recombination in the bulk and at the surface. The thesis investigates the use of nanostructured composite electrodes, where thin films of Fe&sub2O&sub3 are deposited onto a nanostructured metal oxide substrate, in order to overcome some of the factors that limit the water splitting efficiency of Fe&sub2O&sub3. Doped (Si, Ti) and undoped Fe&sub2O&sub3 thin films were prepared using vacuum deposition techniques, and their photoelectrochemical, electrical, optical and structural properties were characterised. The doped Fe&sub2O&sub3 exhibited much higher photoelectrochemical activity than the undoped material, due to an improvement of the surface transfer coefficient and some grain boundary passivation. Schottky barrier modeling of Fe&sub2O&sub3 thin films showed that either the width of the depletion region or the diffusion length is the dominant parameter with a value around 30 nm, and confirmed that the surface charge transfer coefficient is small. An extensive review of the conduction mechanisms of Fe&sub2O&sub3 is presented. ZnO and SnO&sub2 nanostructures were investigated as substrates for the Fe&sub2O&sub3 thin films. Arrays of well-aligned high aspect ratio ZnO nanowires were optimised via the use of nucleation seeds and by restricting the lateral growth of the nanostructures. The geometry of the nanostructured composite electrodes was designed to maximise absorption and charge transfer processes. Composite nanostructured electrodes showed lower quantum efficiencies than equivalent thin films of Fe&sub2O&sub3, though a relative enhancement ofcollection of long wavelength charge carriers was observed, indicating that the nanostructured composite electrode concept is worthy of further investigation. The rate-limiting step for water splitting with Fe&sub2O&sub3 is not yet well understood and further investigations of the surface and bulk charge transfer properties are required in order to design electrodes to overcome specific shortcomings.
23

Mimicking Nature – Synthesis and Characterisation of Manganese Complexes of Relevance to Artificial Photosynthesis

Berggren, Gustav January 2009 (has links)
The development of efficient catalyst for water oxidation is of paramount importance to artificial photosynthesis, but before this can be achieved a deeper understanding of this reaction is essential. In nature this reaction occurs in a tetranuclear Mn-cluster which serves as the work-horse of oxygenic photosynthesis. This thesis summarises my efforts at developing molecular systems capable of mimicking this complex employing a biomimetic approach. Three different approaches towards this goal are described here-in. The first section describes a screening study, in which a number of manganese complexes were tested to see whether or not they were capable of catalysing the formation of dioxygen when treated with different oxidants (Papers I). For those reactions in which dioxygen formation was observed the reactions were repeated in labelled water and the incorporation of labelled O-atoms was studied by mass spectrometry. This allowed us to determine to what extent water was the source of the evolved dioxygen (Papers II-III). In Chapter three a reported catalyst and a derivative thereof is studied in depth. The influence of changes to the ligand on the oxygen–oxygen bond forming reaction could unfortunately not be reliably addressed, because of the instability of the complexes under “catalytic” conditions. Nevertheless, the study allowed us to revise the “carboxylate shift”-mechanism suggested in the literature (Papers IV-V). Chapter four describes the continuation of my work on ligands featuring the carboxylate ligand motif first introduced in Chapter three. In this study ligands containing multiple binding pockets were designed and synthesised (Paper VI). A better understanding of the mechanism in the natural water oxidising enzyme will facilitate the design of biomimetic complexes, this is discussed in Chapter five. In this work model complexes (Paper VII) are used to study the mechanism by which natures own water oxidising catalyst performs this reaction.
24

Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots

Alenzi, Naser D. 2010 December 1900 (has links)
Hydrogen production by water-splitting using solar energy and nanostructure photocatalysts is very promising as a renewable, efficient, environmentally clean technology. The key is to reduce the cost of hydrogen production as well as increase the solar-to-hydrogen conversion efficiency by searching for cost-effective photocatalytic materials. In this dissertation, energy efficiency calculation was carried out based on hydrogen production observation to evaluate the nanomaterials activity. The results are important to gain better understanding of water-splitting reaction mechanism. Design, synthesis, characterization/properties and application of these nanomaterials was the road-map to achieve the research objectives. The design of TiO2 is selected based on unique photocatalytic and photovoltaic properties and high stability in aqueous solution. Various structures of nanocomposites TiO2 were designed according to their characteristics and potential activity. TiO2 with quantum dots, nanocomposites thin film, nanofibers, nanorods, nanowires (core/shell), nanotubes, nanopowders, nanoparticles, and nanosphere decorated with low cost metals, sensitized with dye, and doped with nitrogen are designed. Green physical and chemical synthesis methods such as sol-gel techniques, autoclave, microwave, electrospinning, wet impregnation, hydrothermal, chemical vapor deposition, template-based fabrication (porous anodic aluminium oxide membrane), drop casting, dip coating, wet coating were used to synthesize and fabricate the nanomaterials and quantum dots.Both bottom-up and top-down synthesis techniques were used. The ability to control and manipulate the size, shape/geometry, crystal structure, chemical compositions, interaction and interface properties of these materials at nano-scale during the synthesis enable to enhance their thermal, optical, chemical, electrical, …etc properties. Several characterization techniques such as XRD, XPS, EDS, SEM, UV-visible spectra, and optical microscopic and digital camera were also obtained to characterize the properties and confirm to achieve the desired design. The application or processing to test the activity of these nanomaterials for hydrogen production by water-splitting was conducted through extensive experimental program. It was carried out in a one photo-single column experimental set-up to detect hydrogen evolution. A high throughput screening process to evaluate single photo reduction catalysts was established here for simplicity, safety, cost-effective and flexibility of testing nanomaterials for water photoreduction reactivity and hydrogen generation. Therefore, methanol as electron donor or oxidation agent was mixed with water in equal volume ratio in order to prevent the oxygen evolution and only measured the time course of hydrogen production. The primary objectives of this study is to investigate the following (1) The structure-properties relationship through testing quantum dots, nanocomposites thin film, nanofibers, nanorods, nanowires (core/shell), nanotubes, nanopowders, nanoparticles, nanospheres of TiO2 decorated with metals, dye sensitization, and nitrogen-doping. (2) The role of adding electron donors/relays to solution and their effect on semiconductor surface-electrolyte interface under constant conditions such as KI, Mv 2, NaCl, NaHCO3, sea and pure water. (3) Band gap and defect engineering by cation and anion doping. (4) Quantum dots and dye sensitization effect. The nanomaterials activity evaluated based on observed hydrogen production rate (μmol/h/g) experimentally and based on the energy efficiency (percent) calculation. Major findings in this dissertation are (1) A high throughput screening process to evaluate single photoreduction catalysts for solar-hydrogen production by water-splitting was established. (2) nanofibers structure of TiO2 doped with nitrogen, sensitized with dye (Rose Bengal Sodium) and quantum dots (CuInS2), and decorated with metals (Ag) showed the high solar-to-hydrogen conversion efficiency and high hydrogen production rate (3) Simple, safe, inexpensive, robust, efficient and green physical and chemical synthesis methods were used to prepare the nanomaterials and quantum dots. (4) Gaining insight and better understanding of water-splitting reaction mechanism by (a) Studying the structure-properties relationship of nanomaterials (b) Studying the role of additives on surface-interface chemistry of semiconductor and electrolyte (c) Knowing how to reduce the electron-hole recombination reactions to enhance quantum efficiency (d) Extending the absorption of nanomaterials to harness the visible light of solar spectrum radiation by doping and defect chemistry.
25

Nanostructured materials for solar energy conversion

Hoang, Son Thanh 11 November 2013 (has links)
The energy requirements of our planet will continue to grow with increasing world population and the modernization of currently underdeveloped countries. This will force us to search for environmental friendly alternative energy resources. Solar energy by far provides the largest of all renewable energy resources with an average power of 120 000 TW irradiated from the sun which can be exploited through solar electricity, solar fuel, and biomass. Nanostructured materials have been the subject of extensive research as the building block for construction of solar energy conversion devices for the past decades. The nanostructured materials sometimes have peculiar electrical and optical properties that are often shape and size dependent and are not expected in the bulk phase. Recent research has focused on new strategies to control nanostructured morphologies and compositions of semiconductor materials to optimize their solar conversion efficiency. In this dissertation, we discuss the synthesis and characterizations of one dimensional nanostructured TiO₂ based materials and their solar energy conversion applications. We have developed a solvothermal synthesis method for growing densely packed, vertical, single crystalline TiO₂ rutile nanowire arrays with unprecedented small feature sizes of 5 nm and lengths up to 4.4 [mu]m. Because of TiO₂'s large band gap, the working spectrum of TiO₂ is limited to the ultra violet region with photons shorter than 420 nm. We demonstrate that the active spectrum of TiO₂ can be shifted to ~ 520 nm with incorporation of N via nitridation of TiO₂ nanowires in NH₃ flow. In addition, we demonstrate a synergistic effect involving hydrogenation and nitridation cotreatment of TiO₂ nanowires that further redshift the active spectrum of TiO₂ to 570 nm. The Ta and N co-incorporated TiO₂ nanowires were also prepared and showed significant enhancement in photoelectrochemical performance compared to mono-incorporation of Ta or N. This enhancement is due to fewer recombination centers from charge compensation effects and suppression of the formation of an amorphous layer on the nanowires during the nitridation process. Finally, we have developed hydrothermal synthesis of single crystalline TiO₂ nanoplatelet arrays on virtually all substrates and demonstrated their applications in water photo-oxidation and dye sensitized solar cells. / text
26

Mixed metal oxide semiconductors and electrocatalyst materials for solar energy conversion

Berglund, Sean Patrick 21 January 2014 (has links)
The sun is a vast source of renewable energy, which can potentially be used to satisfy the world's increasing energy demand. Yet many material challenges need to be overcome before solar energy conversion can be implemented on a larger scale. This dissertation focuses on materials used for solar energy conversion through photo-electrochemical (PEC) processes. It discusses methods for improving PEC materials, namely mixed metal oxide semiconductors, by nanostructuring, incorporation of additional elements, and application surface electrocatalysts. In this dissertation several material synthesis techniques are detailed. A high vacuum synthesis process known as reactive ballistic deposition (RBD) is used to synthesize nanostructured bismuth vanadate (BiVO₄), which is studied for PEC water oxidation. Additionally, ballistic deposition (BD) is used to incorporate Mo and W into nanostructured BiVO₄ to improve the PEC activity. An array dispenser and scanner system is used to incorporate metals into copper oxide (CuO) and copper bismuth oxide (CuBi₂O₄) and over 3,000 unique material compositions are tested for cathodic photoactivity. The system is also used to test 35 elements as single component metal oxides, mixed metal oxides, and dopants for titanium dioxide (TiO₂) for use in dye-sensitized solar cells (DSCs). Lastly, RBD is used to deposit tungsten semicarbide (W₂C) onto p-type silicon (p-type) substrates as an electrocatalyst for PEC proton reduction. In many cases, the synthesis techniques and new material combinations presented in this dissertation result in improved PEC performance. The materials are thoroughly assessed and characterized to gain insights into their nanostructure, chemical composition, light absorption, charge transport properties, catalytic activity, and stability. / text
27

Optical properties of free-standing cubic silicon carbide

Jansson, Mattias January 2015 (has links)
The properties of free-standing cubic silicon carbide for optoelectronic applications are explored in this work. The main focus of the work is on boron doped cubic silicon carbide, which is proposed as a highly useful material in several optoelectronic applications. The material is grown using sublimation epitaxy and the doped material is grown homoepitaxially on nominally undoped seeds. It is characterized using the experimental setups of photoluminescence spectroscopy, Nomarski interference spectroscopy and absorption spectroscopy. I have studied seed growth of nominally undoped cubic material on hexagonal (4H) substrates, and the influence on the grown material from the different faces of the substrate. It is found that it is not possible under the explored conditions to completely cover the growth area with the cubic polytype on the carbon face, but it can be done reproducibly on the silicon face. Reasons for this are discussed. Different doping setups are also explored. The influence on the material properties from growth conditions is explored. It is shown from absorption measurements that it is possible to grow boron doped cubic silicon carbide using this growth method, whereas optical microscopy studies show that the sample quality degrades with high doping concentrations. I have explored the luminescence properties of the material. No boron related emission is found with either room temperature or low temperature photoluminescence spectroscopy. Reasons for this are discussed using results from absorption measurements and optical microscopy.
28

Water splitting in natural and artificial photosynthetic systems

Koroidov, Sergey January 2014 (has links)
Photosynthesis is the unique biological process that converts carbon dioxide into organic compounds, for example sugars, using the energy of sunlight. Thereby solar energy is converted into chemical energy. Nearly all life depends on this reaction, either directly, or indirectly as the ultimate source of their food. Oxygenic photosynthesis occurs in plants, algae and cyanobacteria. This process created the present level of oxygen in the atmosphere, which allowed the formation of higher life, since respiration allows extracting up to 15-times more energy from organic matter than anaerobic fermentation. Oxygenic photosynthesis uses as substrate for the ubiquitous water. The light-induced oxidation of water to molecular oxygen (O2), catalyzed by the Mn4CaO5 cluster associated with the photosystem II (PS II) complex, is thus one of the most important and wide spread chemical processes occurring in the biosphere. Understanding the mechanism of water-oxidation by the Mn4CaO5 cluster is one of today’s great challenges in science. It is believed that one can extract basic principles of catalyst design from the natural system that than can be applied to artificial systems. Such systems can be used in the future for the generation of fuel from sunlight. In this thesis the light-induced production of molecular oxygen and carbon dioxide (CO2) by PSII was observed by membrane-inlet mass spectrometry. By analyzing this observation is shown that CO2 not only is the substrate in photosynthesis for the production of sugars, but that it also regulates the efficiency of the initial steps of the electron transport chain of oxygenic photosynthesis by acting, in form of HCO3-, as acceptor for protons produced during water-splitting. This finding concludes the 50-years old search for the function of CO2/HCO3− in photosynthetic water oxidation. For understanding the mechanism of water oxidation it is crucial to resolve the structures of all oxidation states, including transient once, of the Mn4CaO5 cluster. With this application in mind a new illumination setup was developed and characterized that allowed to bring the Mn4CaO5 cluster of PSII microcrystals into known oxidation states while they flow through a narrow capillary. The optimized illumination conditions were employed at the X-ray free electron laser at the Linac Coherent Light Source (LCLS) to obtain simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) at room temperature. This two methods probe the overall protein structure and the electronic structure of the Mn4CaO5 cluster, respectively. Data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. This approach opens new directions for studying structural changes during the catalytic cycle of the Mn4CaO5 cluster, and for resolving the mechanism of O-O bond formation. In two other projects the mechanism of molecular oxygen formation by artificial water oxidation catalysts containing inexpensive and abundant elements were studied. Oxygen evolution catalyzed by calcium manganese and manganese only oxides was studied in 18O-enriched water. It was concluded that molecular oxygen is formed by entirely different pathways depending on what chemical oxidant was used.  Only strong non-oxygen donating oxidants were found to support ‘true’ water-oxidation. For cobalt oxides a study was designed to understand the mechanistic details of how the O-O bond forms. The data demonstrate that O-O bond formation occurs by direct coupling between two terminal water-derived ligands. Moreover, by detailed theoretical modelling of the data the number of cobalt atoms per catalytic site was derived.
29

Design of Bi-based layered oxyhalide photocatalysts for efficient solar-to-chemical conversion / 高効率太陽光エネルギー変換に向けたBi系層状酸ハロゲン化物光触媒の設計

Ogawa, Kanta 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23911号 / 工博第4998号 / 新制||工||1780(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 陰山 洋, 教授 藤田 晃司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
30

Nanostructured materials for photoelectrochemical hydrogen production using sunlight.

Glasscock, Julie Anne, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Solar hydrogen has the potential to replace fossil fuels with a sustainable energy carrier that can be produced from sunlight and water via &quotewater splitting&quote. This study investigates the use of hematite (Fe&sub2O&sub3) as a photoelectrode for photoelectrochemical water splitting. Fe&sub2O&sub3 has a narrow indirect band-gap, which allows the utilization of a substantial fraction of the solar spectrum. However, the water splitting efficiencies for Fe&sub2O&sub3 are still low due to poor absorption characteristics, and large losses due to recombination in the bulk and at the surface. The thesis investigates the use of nanostructured composite electrodes, where thin films of Fe&sub2O&sub3 are deposited onto a nanostructured metal oxide substrate, in order to overcome some of the factors that limit the water splitting efficiency of Fe&sub2O&sub3. Doped (Si, Ti) and undoped Fe&sub2O&sub3 thin films were prepared using vacuum deposition techniques, and their photoelectrochemical, electrical, optical and structural properties were characterised. The doped Fe&sub2O&sub3 exhibited much higher photoelectrochemical activity than the undoped material, due to an improvement of the surface transfer coefficient and some grain boundary passivation. Schottky barrier modeling of Fe&sub2O&sub3 thin films showed that either the width of the depletion region or the diffusion length is the dominant parameter with a value around 30 nm, and confirmed that the surface charge transfer coefficient is small. An extensive review of the conduction mechanisms of Fe&sub2O&sub3 is presented. ZnO and SnO&sub2 nanostructures were investigated as substrates for the Fe&sub2O&sub3 thin films. Arrays of well-aligned high aspect ratio ZnO nanowires were optimised via the use of nucleation seeds and by restricting the lateral growth of the nanostructures. The geometry of the nanostructured composite electrodes was designed to maximise absorption and charge transfer processes. Composite nanostructured electrodes showed lower quantum efficiencies than equivalent thin films of Fe&sub2O&sub3, though a relative enhancement ofcollection of long wavelength charge carriers was observed, indicating that the nanostructured composite electrode concept is worthy of further investigation. The rate-limiting step for water splitting with Fe&sub2O&sub3 is not yet well understood and further investigations of the surface and bulk charge transfer properties are required in order to design electrodes to overcome specific shortcomings.

Page generated in 0.0612 seconds