• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding the mechanism of permeation through graphene-based membranes using molecular dynamics simulations

Dix, James January 2017 (has links)
The UN predicts that by 2050 there will water shortages throughout the globe. Current sources for safe, clean drinking water are being over mined and exhausted. Seawater provides an alternative water source, but a high salt content makes it unsuitable for the majority of applications. However, reverse osmosis lowers the salt content producing water that is safe for human consumption. Reverse osmosis uses a semi-permeable membrane to prevent the transport of salt but allows for the transport of water. Currently these membranes are susceptible to fouling and contamination, which reduces their efficiency. Graphene-oxide membranes offer a new material for reserves osmosis membranes. Sheets of graphene-oxide are stacked in a layered structure. The separation between the sheets can be controlled using physical confinement, resulting in limited ion permeation of abundant cations in seawater, like Na+ and K+. This is believed to be due to the separation of 0.76 nm between the graphene sheets, forcing the ions to lose its surrounding water molecules, making it unfavourable for the ion to travel through the membrane. Molecular dynamics simulations can give an atomic level insight into the molecular processes within GO membranes. Recent simulations have shown that charged species are attracted to graphene surfaces due to polarisation of the pi-electron system. This work has managed to incorporate these ion-pi interactions into molecular dynamics simulations. Including ion-pi interactions caused some ions, like Na+ and K+, to prefer to lose water molecules and reside at a graphene surface. This work observed the same phenomena when ions were confined to graphene channel ranging from 1.3 nm - 0.7 nm. This observation could have a large impact on whether dehydration is limiting the permeation of these two ions, or if there are additional processes that limit their molecular transport.
2

Computational study of the effects of the confinement and the interacting solutes on the properties of the water-like models / Estudo computacional dos efeitos de confinamento e de solutos interagentes nas propriedades de modelos simplificados tipo-água

Furlan, Alexandre Penteado January 2017 (has links)
Apesar de sua familiaridade e simplicidade, a água apresenta um conjunto propriedades termodinâmicas, dinâmicas e estruturais que são ainda objeto de intensa pesquisa. O aumento da densidade com a temperatura, da difusão com a densidade, ou ainda do ordenamento com a temperatura são exemplos de alguns de seus comportamentos não usuais. Com a finalidade de melhor compreender tais propriedades inúmeras abordagens têm sido utilizadas, tais como o uso geometrias de confinamento, modelos simplificados ou até mesmo misturas. Dentre as geometrias confinantes frequentemente usadas, encontra-se, nanoporos, placas paralelas e meio porosos. Os meios porosos são formados por obstáculos fixos que impõem efeitos de volume excluído adicionais ao sistema. Já no caso de misturas quando elas ocorrem entre líquidos capazes de formar ligações de hidrogênio, o comportamento não usual da água dá origem a um conjunto ainda maior de propriedades anômalas. A mistura água-metanol por exemplo, é munida de um conjunto propriedades de excesso incapazes de serem descritas pelas teorias usuais. São alguns exemplos, o máximo no calor específico e o mínimo no volume e entalpia de excesso. Neste projeto de doutoramento, nós estudamos por simulações numericas o confinamento por meio poroso (desordem queched) e misturas de água com solutos interagentes. O primeiro estudo é realizado usando um modelo 2D tipo-água que é largamente conhecido na literatura. No segundo estágio, estamos a influência de solutos interagentes nas propriedades de modelos em rede e contínuos. Para o modelo em rede, nós desenvolvemos um modelo de soluto e posteriormente uma técnica capaz de simular misturas de modelos em rede a pressão constante. De posse desta técnica estudamos as propriedades de excesso da mistura. / Although the familiarity and simplicity, the water show a set of thermodynamic, dynamics and structural properties which are still subject to intense research. The increase of density as the temperature, of diffusion as the density, or even of ordering with the temperature are examples of some of its unusual behavior. In order to better understand these properties numerous approaches have been used, such as the use of confinement geometries, simplified models, or ever mixtures. Among the confinement geometries used, are those, nanopores, parallel plates and porous media. The porous media are formed by fixed obstacles that impose the additional excluded volume effects to the system. In the case of mixtures, when they occur between liquids able to form hydrogen-bonds, the unusual behavior of water give rise to a set even higher anomalous properties. The water-methanol mixture, for example, has a set of excess properties unable to be described by usual theories. Some examples are the maximum in the specific heat and minimum in excess volume and enthalpy. In this Ph.D. project, we study by numerical simulations, the confinement of water by porous media(or under quenched disorder) and the mixture of water with interacting solutes. The first study is performed using a 2D lattice model which is widely known in the literature. In a second stage, we study the influence of interacting solutes on the properties of lattice and continuous models. For the lattice model, we develop a solute model and a technique to simulate mixtures of lattice models at constant pressure. Using this technique, we study the excess properties of the mixture. For the continuous model we study the influence of a dimeric solute on the TMD of a water-like model and posteriorly we study the excess properties of this type of mixture.
3

Computational study of the effects of the confinement and the interacting solutes on the properties of the water-like models / Estudo computacional dos efeitos de confinamento e de solutos interagentes nas propriedades de modelos simplificados tipo-água

Furlan, Alexandre Penteado January 2017 (has links)
Apesar de sua familiaridade e simplicidade, a água apresenta um conjunto propriedades termodinâmicas, dinâmicas e estruturais que são ainda objeto de intensa pesquisa. O aumento da densidade com a temperatura, da difusão com a densidade, ou ainda do ordenamento com a temperatura são exemplos de alguns de seus comportamentos não usuais. Com a finalidade de melhor compreender tais propriedades inúmeras abordagens têm sido utilizadas, tais como o uso geometrias de confinamento, modelos simplificados ou até mesmo misturas. Dentre as geometrias confinantes frequentemente usadas, encontra-se, nanoporos, placas paralelas e meio porosos. Os meios porosos são formados por obstáculos fixos que impõem efeitos de volume excluído adicionais ao sistema. Já no caso de misturas quando elas ocorrem entre líquidos capazes de formar ligações de hidrogênio, o comportamento não usual da água dá origem a um conjunto ainda maior de propriedades anômalas. A mistura água-metanol por exemplo, é munida de um conjunto propriedades de excesso incapazes de serem descritas pelas teorias usuais. São alguns exemplos, o máximo no calor específico e o mínimo no volume e entalpia de excesso. Neste projeto de doutoramento, nós estudamos por simulações numericas o confinamento por meio poroso (desordem queched) e misturas de água com solutos interagentes. O primeiro estudo é realizado usando um modelo 2D tipo-água que é largamente conhecido na literatura. No segundo estágio, estamos a influência de solutos interagentes nas propriedades de modelos em rede e contínuos. Para o modelo em rede, nós desenvolvemos um modelo de soluto e posteriormente uma técnica capaz de simular misturas de modelos em rede a pressão constante. De posse desta técnica estudamos as propriedades de excesso da mistura. / Although the familiarity and simplicity, the water show a set of thermodynamic, dynamics and structural properties which are still subject to intense research. The increase of density as the temperature, of diffusion as the density, or even of ordering with the temperature are examples of some of its unusual behavior. In order to better understand these properties numerous approaches have been used, such as the use of confinement geometries, simplified models, or ever mixtures. Among the confinement geometries used, are those, nanopores, parallel plates and porous media. The porous media are formed by fixed obstacles that impose the additional excluded volume effects to the system. In the case of mixtures, when they occur between liquids able to form hydrogen-bonds, the unusual behavior of water give rise to a set even higher anomalous properties. The water-methanol mixture, for example, has a set of excess properties unable to be described by usual theories. Some examples are the maximum in the specific heat and minimum in excess volume and enthalpy. In this Ph.D. project, we study by numerical simulations, the confinement of water by porous media(or under quenched disorder) and the mixture of water with interacting solutes. The first study is performed using a 2D lattice model which is widely known in the literature. In a second stage, we study the influence of interacting solutes on the properties of lattice and continuous models. For the lattice model, we develop a solute model and a technique to simulate mixtures of lattice models at constant pressure. Using this technique, we study the excess properties of the mixture. For the continuous model we study the influence of a dimeric solute on the TMD of a water-like model and posteriorly we study the excess properties of this type of mixture.
4

Computational study of the effects of the confinement and the interacting solutes on the properties of the water-like models / Estudo computacional dos efeitos de confinamento e de solutos interagentes nas propriedades de modelos simplificados tipo-água

Furlan, Alexandre Penteado January 2017 (has links)
Apesar de sua familiaridade e simplicidade, a água apresenta um conjunto propriedades termodinâmicas, dinâmicas e estruturais que são ainda objeto de intensa pesquisa. O aumento da densidade com a temperatura, da difusão com a densidade, ou ainda do ordenamento com a temperatura são exemplos de alguns de seus comportamentos não usuais. Com a finalidade de melhor compreender tais propriedades inúmeras abordagens têm sido utilizadas, tais como o uso geometrias de confinamento, modelos simplificados ou até mesmo misturas. Dentre as geometrias confinantes frequentemente usadas, encontra-se, nanoporos, placas paralelas e meio porosos. Os meios porosos são formados por obstáculos fixos que impõem efeitos de volume excluído adicionais ao sistema. Já no caso de misturas quando elas ocorrem entre líquidos capazes de formar ligações de hidrogênio, o comportamento não usual da água dá origem a um conjunto ainda maior de propriedades anômalas. A mistura água-metanol por exemplo, é munida de um conjunto propriedades de excesso incapazes de serem descritas pelas teorias usuais. São alguns exemplos, o máximo no calor específico e o mínimo no volume e entalpia de excesso. Neste projeto de doutoramento, nós estudamos por simulações numericas o confinamento por meio poroso (desordem queched) e misturas de água com solutos interagentes. O primeiro estudo é realizado usando um modelo 2D tipo-água que é largamente conhecido na literatura. No segundo estágio, estamos a influência de solutos interagentes nas propriedades de modelos em rede e contínuos. Para o modelo em rede, nós desenvolvemos um modelo de soluto e posteriormente uma técnica capaz de simular misturas de modelos em rede a pressão constante. De posse desta técnica estudamos as propriedades de excesso da mistura. / Although the familiarity and simplicity, the water show a set of thermodynamic, dynamics and structural properties which are still subject to intense research. The increase of density as the temperature, of diffusion as the density, or even of ordering with the temperature are examples of some of its unusual behavior. In order to better understand these properties numerous approaches have been used, such as the use of confinement geometries, simplified models, or ever mixtures. Among the confinement geometries used, are those, nanopores, parallel plates and porous media. The porous media are formed by fixed obstacles that impose the additional excluded volume effects to the system. In the case of mixtures, when they occur between liquids able to form hydrogen-bonds, the unusual behavior of water give rise to a set even higher anomalous properties. The water-methanol mixture, for example, has a set of excess properties unable to be described by usual theories. Some examples are the maximum in the specific heat and minimum in excess volume and enthalpy. In this Ph.D. project, we study by numerical simulations, the confinement of water by porous media(or under quenched disorder) and the mixture of water with interacting solutes. The first study is performed using a 2D lattice model which is widely known in the literature. In a second stage, we study the influence of interacting solutes on the properties of lattice and continuous models. For the lattice model, we develop a solute model and a technique to simulate mixtures of lattice models at constant pressure. Using this technique, we study the excess properties of the mixture. For the continuous model we study the influence of a dimeric solute on the TMD of a water-like model and posteriorly we study the excess properties of this type of mixture.
5

Ice Inhibition Properties of Supramolecular Hydrogels

Sepulveda-Medina, Pablo Ivan 26 December 2021 (has links)
No description available.

Page generated in 0.0935 seconds