• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A futures approach to water distribution and sewer network (re)design

Atkinson, Stuart January 2013 (has links)
When designing urban water systems (i.e. water distribution and sewer systems) it is imperative that uncertainty is taken into consideration. However, this is a challenging problem due to the inherent uncertainty associated with both system loading requirements and the potential for physical components failure. It is therefore desirable to improve the reliability of each system in order to account for these uncertainties. Although it is possible to directly evaluate the reliability of a water distribution systems (WDS) (using reliability measures), the calculation processes involved are computationally intensive and therefore unsuitable for some state-of-the-art, iterative design approaches (such as optimisation). Consequently, interest has recently grown in the use of reliability indicators, which are simpler and faster to evaluate than conventional direct reliability methods. In this thesis, a novel measure (the RUF) is developed to quantify reliability in urban water systems with a view to enhance their robustness under a range of future scenarios (Policy Reform, Market Forces, Fortress World and New-Sustainability Paradigm). The considered four future scenarios were synthesized in the EPSRC supported multidisciplinary 4 year project: Urban Futures. Each investigated urban future scenario is characterised by a distinct household water demand and local demand distribution (emerging due to different urban forms evolving in future scenarios). In order to assess the impact of urban futures, RUF has been incorporated into Urban Water System (UWS) dynamic simulations for both WDSs and Foul Sewer Systems (FSSs) using open source codes of EPANET and SWMM. Additionally, in order to overcome extensive computational effort, resulting from the use of traditional reliability measures, a new holistic reliability indicator, the hydraulic power entropy (IHPE) has been developed and compared to existing reliability indicators. Additionally, the relationship between the new reliability indicator and the above mentioned RUF reliability measure is investigated. Results suggest that the magnitude of the IHPE in network solutions provides a holistic indication of the hydraulic performance and reliability for a WDS. However, the performance of optimal solutions under some Urban Futures indicates that additional design interventions are required in order to achieve desired future operation. This thesis also proposes a new holistic foul sewer system (FSS) reliability indicator (the IFSR). The IFSR represents sewer performance as a function of excess pipe capacity (in terms of available increase and also decrease in inflow). The indicator has been tested for two case studies (i.e. different sewer network layouts). Results suggest that the magnitude of IFSR has positive correlations with a number of identified key performance indicators (i.e. relating to capacity, velocity, blockages). Finally, an Integrated Design Approach (IDA) has been developed in order to assess the implications of applying design interventions on both a WDS and downstream FSS. The approach holistically considers present and future operation of each interconnected system. The approach was subsequently demonstrated using two proposed design interventions. Results suggest that, for the considered design interventions, there is trade-off between the simultaneous improvement of both WDS and FSS operation and reliability.
2

Deriving peak factors for residential indoor water demand by means of a probability based end-use model

Scheepers, Hester Maria 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The expected peak water demand in a water distribution system (WDS) is an important consideration for WDS design purposes. In South Africa the most common method of estimating peak demand is by multiplying the average demand by a dimensionless peak factor. A peak factor is the ratio between the maximum flow rate (which refers to the largest volume of flow to be received during a relatively short time period, say , expressed as the average volume per unit time), and the average flow rate over an extended time period. The magnitude of the peak factor will vary, for a given daily water demand pattern, depending on the chosen value of . The design guidelines available give no clear indication of the time intervals most appropriate for different peak factor applications. It is therefore important to gain a better understanding regarding the effect of on the derived peak factor. A probability based end-use model was constructed as part of this study to derive diurnal residential indoor water demand patterns on a temporal scale of one second. These stochastically derived water demand patterns were subsequently used to calculate peak factors for different values of , varying from one second to one hour. The end-use model derived the water demand patterns by aggregating the synthesised end-use events of six residential indoor end-uses of water in terms of the water volume required, duration and the time of occurrence of each event. The probability distributions describing the end-use model parameters were derived from actual end-use measurements that had previously been collected in a noteworthy North-American end-use project (Mayer et al., 1999). The original comprehensive database, which included water measurements from both indoor and outdoor end-uses, was purchased for use in this project. A single execution of the end-use model resulted in the synthesised diurnal water demand pattern for a single household. The estimated water demand pattern for simultaneous water demand by groups of households was obtained by adding individual iterations of the end-use model, considering group sizes of between one and 2 000 households in the process. A total of 99 500 model executions were performed, which were statistically aggregated by applying the Monte Carlo method and forming 4 950 unique water demand scenarios representing 29 different household group sizes. For each of the 4 950 water demand scenarios, a set of peak factors was derived for eight selected values. The end-use model presented in this study yielded realistic indoor water demand estimations when compared to publications from literature. In agreement with existing knowledge, as expected, an inverse relationship was evident between the magnitude of the peak factors and . The peak factors across all time intervals were also found to be inversely related to the number of households, which agreed with other publications from literature. As the number of households increased, the degree to which the peak factor was affected by the time intervals decreased. This study explicitly demonstrated the effect of time intervals on peak factors. The results of this study could act as the basis for the derivation of a practical design guideline for estimating peak indoor flows in a WDS, and the work could be extended in future to include outdoor water demand and sensitivity to WDS pressure. / AFRIKAANSE OPSOMMING: Die verwagte water spitsaanvraag is ‘n belangrike oorweging in die ontwerp van ‘n waterverspreidingsnetwerk. Die mees algemene metode in Suid Afrika om spitsaanvraag te bereken is deur die gemiddelde wateraanvraag te vermeningvuldig met ‘n dimensielose spitsfaktor. ‘n Spitsfaktor is die verhouding tussen die maksimum watervloei tempo (wat verwys na die grootste volume water wat ontvang sal word tydens ‘n relatiewe kort tydsinterval, , uitgedruk as die gemiddelde volume per tyd eenheid), en die gemiddelde watervloei tempo gedurende ‘n verlengde tydsinterval. Die grootte van die spitsfaktor sal varieer vir ‘n gegewe daaglikse vloeipatroon, afhangende van die verkose waarde. Die beskikbare ontwerpsriglyne is onduidelik oor watter tydsintervalle meer geskik is vir die verskillende spitsfaktor toepassings. Daarom is dit belangrik om ‘n beter begrip te verkry ten opsigte van die effek van op die verkrygde spitsfaktor. ‘n Waarskynliksheidsgebaseerde eindverbruik model is opgestel om deel te vorm van hierdie studie, om daaglikse residensiële binnenshuise wateraanvraag patrone af te lei op ‘n temporale skaal van een sekonde. Die stogasties afgeleide wateraanvraag patrone is daarna gebruik om die verskeie spitsfaktore te bereken vir verskillende waardes van , wat varieer vanaf een sekonde tot een uur. Die eindverbruik model stel die daaglikse vloeipatroon van een huis saam deur die eindeverbruik gebeure van ses residensiële binnenshuise eindverbruike saam te voeg in terme van the vereiste water volume en die tyd van voorkoms van elke gebeurtenis. Die waarskynliksheids distribusie wat die eindverbruik model parameters omskryf is verkry van werklike gemete eindverbruik waardes, wat voorheen in ‘n beduidende Noord-Amerikaanse eindverbruik projek (Mayer et al. 1999) versamel is. Die oorspronklike en omvattende databasis, wat gemete waardes van binnenshuis en buite water verbruik ingesluit het, is aangekoop vir gebruik gedurende hierdie projek. ‘n Enkele uitvoering van die eindverbruik model stel gevolglik ‘n daaglikse wateraanvraag patroon saam vir ‘n elkele huishouding. Die wateraanvraag patroon vir gelyktydige water verbruik deur groepe huishoudings is verkry deur individuele iterasies van die eindverbruik model statisties bymekaar te tel met die Monte Carlo metode, terwyl groep groottes van tussen een en 2 000 huishoudings in die proses oorweeg is. ‘n Totaal van 99 500 model uitvoerings is gedoen, wat saamgevoeg is om 4 950 unieke watervraag scenarios voor te stel, wat verteenwoordigend is van 29 verskillende huishouding groep groottes. Vir elkeen van die 4 950 watervraag senarios, is ‘n stel spitsfaktore afgelei vir agt verkose waardes. Die eindverbruik model aangebied in hierdie studie lewer ‘n realistiese binnenshuise wateraanvraag skatting, wanneer dit vergelyk word met verslae in die literatuur. Ooreenkomstig met bestaande kennis is ‘n sterk inverse verhouding sigbaar tussen die grootte van die spitsfaktore en . Dit is ook gevind dat die spitsfaktore oor al die tydsintervalle ‘n inverse verband toon tot die aantal huishoudings, wat ooreenstemmend is met ander publikasies in die literatuur. Soos die aantal huishoudings toeneem, het die mate waartoe die spitsfaktor geaffekteer is deur die tydsintervalle afgeneem. Hierdie studie toon duidelik die effek van tydsintervalle op spitsfaktore. Die resultaat van hierdie studie kan dien as basis om praktiese ontwerpsriglyne te verkry in die skatting van binnenshuise spitsvloei in ‘n waterverspreidingsnetwerk, gegewe dat die werk in die toekoms uitgebrei kan word om ook buitenshuise waterverbruik in te sluit, asook sensitiwiteit tot druk in die waterverspreidingsnetwerk.
3

Desarrollo e implementación de algoritmos para la optimización energética en tiempo real de redes hidráulicas a presión

Alonso Campos, Joan Carles 20 January 2022 (has links)
[ES] El objetivo general de la presente Tesis es investigar metodologías que permitan obtener en tiempo real los parámetros de operación de redes hidráulicas a presión que minimicen el consumo y/o el coste energético, garantizando el cumplimiento de las condiciones de funcionamiento necesarias para una adecuada calidad del servicio. Al tratarse del ámbito de la operación diaria de la red, una de las condiciones indispensables que deben reunir los métodos de optimización es una respuesta lo suficientemente rápida como para que no solo se pueda disponer de las soluciones más convenientes en el momento de ejecutar las consignas de operación, sino que además se habilite un procedimiento flexible que permita dar respuesta a posibles cambios en las predicciones o eventos que puedan producirse. Se ha abordado de manera aislada la optimización energética de los subsistemas de transporte de agua y la de los subsistemas de distribución debido a las distintas características que se pueden observar en ellos. En la parte relativa a los subsistemas de distribución, particularizada al caso de un sistema de riego con bombeo directo a red, se han explorado los métodos metaheurísticos de optimización, realizando varias aportaciones originales orientadas a la mejora en la eficiencia computacional de los mismos, debido a la necesidad de obtener una respuesta rápida compatible con la toma de decisiones en tiempo real. En cuanto a los subsistemas de transporte, se ha explorado la aplicabilidad del método determinista de optimización por programación lineal, a la vista de las importantes ventajas que presenta respecto al resto de métodos generales de optimización. Asimismo, en el contexto de los subsistemas de transporte, se ha trabajado en la definición de una heurística basada en el cálculo del coste energético y/o económico del agua entregada en los puntos de consumo y almacenada en los depósitos intermedios, que ha permitido formular un algoritmo voraz para la optimización energética en cada instante de tiempo. Este método ha conseguido igualar el desempeño alcanzado mediante la programación lineal y se espera que ofrezca unas mejores capacidades en sistemas con un comportamiento marcadamente no lineal, así como también una mejor adaptación a problemas de optimización con la participación de energías renovables. / [CA] L'objectiu general de la present Tesi és la investigació de metodologies que permeten obtindre en temps real els paràmetres d'operació de xarxes hidràuliques a pressió que minimitzen el consum i/o el cost energètic, garantint el compliment de les condicions de funcionament necessàries per a una adequada qualitat del servei. En tractar-se de l'àmbit de l'operació diària de la xarxa, una de les condicions indispensables que han de reunir els mètodes d'optimització és una resposta prou ràpida com perquè no sols es puga disposar de les solucions més convenients en el moment d'executar les consignes d'operació, sinó que a més s'habilite un procediment flexible que permeta donar resposta a possibles canvis en les prediccions o esdeveniments que puguen produir-se. S'ha abordat de manera aïllada l'optimització energètica dels subsistemes de transport d'aigua i la dels subsistemes de distribució (reg per injecció directa) a causa de les diferents característiques que es poden observar en ells. En el treball amb els subsistemes de distribució s'han explorat les possibilitats que ofereixen els mètodes meta-heurístics d'optimització, realitzant diverses aportacions originals orientades a la millora en l'eficiència computacional dels mateixos a causa de la necessitat d'obtindre una resposta més ràpida que siga compatible amb la presa de decisions en temps real. Quant als subsistemes de transport, s'ha explorat l'aplicabilitat del mètode determinista d'optimització per programació lineal a la vista dels importants avantatges que presenta respecte a la resta de mètodes generals d'optimització. Així mateix, en el context dels subsistemes de transport, s'ha treballat en la definició d'una bona heurística basada en el càlcul del cost energètic i/o econòmic de l'aigua entregada en els punts de consum i en els dipòsits intermedis, que ha permés formular un mètode voraç per a l'optimització energètica en cada instant de temps. Aquest mètode ha aconseguit igualar l'acompliment aconseguit mitjançant la programació lineal i s'espera que oferisca unes millors capacitats en sistemes amb un comportament més marcadament no lineal, així com també una millor adaptació a problemes d'optimització amb participació d'energies renovables. / [EN] The general objective of this Thesis is the research of methodologies to obtain in real time the operating parameters of pressurized hydraulic networks that minimize energy consumption and/or cost, ensuring compliance with the operating conditions necessary for an appropriate quality of service. Since this is the field of daily network operation, one of the indispensable conditions that optimization methods must meet is a response fast enough so that not only the most convenient solutions are available at the time of executing the operating instructions, but also a flexible procedure is provided to allow a response to possible changes in the predictions or events that may occur. The energy optimization of the water transport subsystems and that of the distribution subsystems (direct injection irrigation) have been approached separately due to the different characteristics that can be observed in them. In the work with distribution subsystems, the possibilities offered by metaheuristic optimization methods have been explored, making several original contributions aimed at improving their computational efficiency due to the need to obtain a faster response that is compatible with real-time decision making. Regarding transport subsystems, the applicability of the deterministic method of optimization by linear programming has been explored in view of the important advantages it presents with respect to the rest of the general optimization methods. Also, in the context of transport subsystems, there has been a work on the definition of a good heuristic based on the calculation of the energy and/or economic cost of the water delivered at the consumption points and intermediate reservoirs, which has allowed to formulate a greedy method for energy optimization at each time instant. This method has been able to match the performance achieved by linear programming and is expected to offer better capabilities in systems with a more marked non-linear behaviour, as well as a better adaptation to optimization problems involving renewable energies. / Alonso Campos, JC. (2021). Desarrollo e implementación de algoritmos para la optimización energética en tiempo real de redes hidráulicas a presión [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180389 / TESIS
4

Studies On Application Of Control Systems For Urban Water Networks

Kumar, M Prasanna 05 1900 (has links)
Management and supply of water in an urban water distribution system is a complex process, which include various complexities like pressure variations across the network depending on topography, demand variations depending on customers’ requirement and unaccounted water etc. Applying automatic control methods to water distribution systems is a way to improve the management of water distribution. There have been some attempts in recent years to develop optimal control algorithms to assist in the operation of complex water distribution systems. The difficulties involved by these hydraulic systems such as non-linearity, and diurnal demand patterns make the choice of a suitable automatic control method a challenge. For this purpose, this study intends to investigate the applicability of different controllers which would be able to meet the targets as quickly as possible and without creating undue transients. As a first step towards application of different controllers, PD and PID linear controllers have been designed for pump control and valve control in water distribution systems. Then a Dynamic Inversion based nonlinear controller has been designed by considering the non-linearities in the system. Here, different cases considering the effects of initial conditions used, linearization methods used, time step used for integration and selection of gains etc., have been studied before arriving at best controller. These controllers have been designed for both the flow control problems and level control problems. It is found that Dynamic Inversion-based nonlinear controller outperforms other controllers. It is well known that the performance of controllers is much dependent on the tuning of the gains (parameters). Thus in this study various alternative techniques such as Ziegler--Nichols rules (ZNPID), Genetic algorithms (GAPID) and fuzzy algorithms (FZPID) have been studied and a comparative study has been made Although with all the three gain tuning methods, required states have reached their target values, but the responses vary much in reaching to final targets. The self-tuned FZPID controller outperforms other two controllers, especially with regard to overshoots and the time taken to tune the gains for each problem. Further, an optimal DI controller is developed for the over determined case with more controls and less targets. Energy loss is considered as an objective function and normal DI controller equations are considered as constraints. Hence, an attempt is made to reduce the energy minimization in water distribution system by formulating an optimal control problem using optimal Dynamic Inversion concept. Finally, leakage reduction model is developed based on excessive pressure minimization problem by locating valves optimally as well as by setting valves optimally. For this purpose, optimization problem is solved using Pattern search algorithms and hydraulic analysis is carried out using EPANET program.
5

Development And Control Of Urban Water Network Models

Rai, Pawan Kumar 12 1900 (has links) (PDF)
Water distribution systems convey drinking water from treatment plant and make available to consumers’ taps. It consists of essential components like pipes, valves, pumps, tanks and reservoirs etc. The main concern in the working of a water distribution system is to assure customer demands under a choice of quantity and quality throughout the complete life span for the probable loading situations. However, in some cases, the existing infrastructure may not be adequate to meet the customer’s requirements. In such cases, system modeling plays an important role in proper management of water supply systems. In present scenario, modeling plays a significant task in appropriate execution of water distribution system. From the angle of taking management decisions valve throttling control and pumps speed control are very important. These operational problems can be addressed by manual control or by automatic control. The problem is the use of manual controls that slow down the effectiveness of the system. It reduces the efficiency of operation of valve or pump. To improve the efficiency of such water distribution systems, an automatic control based technology has been developed that links the operation of the variable speed pump control or valve throttling control. By employing an automatic control, the pump can adjust its speed at all times to meet the actual flow requirements of each load served. In case of real system design Simulink is the most widely used tool. Commercial software package Matlab/Simulink used for creation of WDS model. The goal was to produce a model that could numerically analyze the dynamic performance of a water distribution system. A Comparison of single platform methodology (Simulink based control) and double platform methodology (Matlab and EPANET based control) has been done. Nonlinear Dynamic Inversion (DI) Control system model is developed for WDS model in Matlab/Simulink environment. Controller gain parameters are the very important value in control prospective. If the controller gain parameters are chosen incorrectly, the controlled process input can be unstable, i.e. its output diverges, with or without oscillation Tuning is the adjustment of control parameters (gains) to the optimum values for the desired control response. There are several methods for tuning controller like manual tuning (Trial and error procedure), Ziegler-Nichols method, Output Constraint Tuning (OCT) etc. Establishment of a pump operational policy by which all the reservoirs can be fed simultaneously to meet their requirements without creating undue transients. Tune the gain of DI controllers by different tuning methods and evaluate the best tuning method on the basis of controller performance. Development of meaningful additional objective is search of lower bound pump speed on the basis of control time or settling time. To bring the pump speeds in feasible range, application of constraint in pumps speed is introduced. The magnitude of constraints can be found using Monte Carlo methods. Monte Carlo methods are frequently used in simulating physical and mathematical systems. This method may be the most commonly applied statistical method in engineering and science disciplines. Another benefit is providing increased confidence that a model is robust using Monte Carlo testing. Model development for generalized control system for water distribution network provides the simplification needed for the simulation of large systems. Model development is based on the study of symmetric and non symmetric small, irregular networks, as well as large, regular and open bifurcating water distribution system. The problem considered in this section is that of flow dynamics in simple to complex, regular network which bifurcates in the form of a branching tree. In addition the control application of the flow network is investigated using valves as the manipulated variables to control branch flow rates. Communication between the network hydraulics coming from EPANET and control algorithm develop on Matlab (Programming Language) can be generalized with the help of development of general purpose control algorithm model.
6

Modeling and Analysis of Water Distribution Systems

Manohar, Usha January 2014 (has links) (PDF)
In most of the urban cities of developing countries piped water supply is intermittent and they receive water on alternate days for about few hours. The Unaccounted For Water (UFW) in these cities is very high due to aged infrastructure, poor management and operation of the system. In the cities of developing countries, supplied water is not able to meet the demand and there is huge gap between supply and demand of water. To meet the water demand people are depending on other sources of water like groundwater, rain water harvesting, waste water treatment, desalination etc. Huge quantity of groundwater is extracted without any account for the quantity of water used. The main challenge for water authorities is to meet the consumer demands at varying loading conditions. However, the present execution of decisions in the operational management of WDS is through manual control. The manual control of valve throttling and control of pump speed, reduces the efficiency and operation of WDS. In such cases, system modeling coupled with automated control can play a significant role in the appropriate execution and operation of the system. In the past few decades, there has been a major development in the field of modeling and analysing water distribution systems. Most of the people in Indian mega cities are facing water problems as they are not able to receive safe reliable drinking water. In rapidly growing cities, the water resources management has been a major concern for the Government. There is always a need to optimize the available water resources when the rate of demand constantly beats the rate of replenishments. Mathematical modeling of WDS has become an indispensible tool since the ages to model any type of WDS. Development of mathematical models of WDS is necessary to analyse the system behavior for a wide range of operating conditions. Using models, problems can be anticipated in proposed or existing systems, and solutions can be evaluated before time, money, and materials are invested in a real-world project. In the present study, we have developed a model of WDS of a typical city like Bangalore, India and analysed them for several scenarios and operating conditions. Bangalore WDS is modeled using EPANET. Before a network model is used for analysis purpose, it must be ensured that the model is predicting the behavior of the system with reasonable accuracy. The process of matching the parameters of the developed model and the field observed data is known as calibration. All WDS require calibration for effective modeling and simulation of the system. Demand and roughness are the most uncertain parameters and they are adjusted repeatedly to get the required head at nodes and flow in the pipes. The calibration parameters usually include pipe roughness, valve settings, pipe diameter and demand. Pipe roughness, valve settings and pipe diameter are associated with the flow conditions and the demands relate to the boundary conditions. For Bangalore WDS, the values of roughness coefficient and demand are available; and the values of valve settings are not available. Hence, this value is estimated during calibration process. Dynamic Inversion (DI) nonlinear controller with Proportional Integral Derivative (PID) features (DI-PID) is used for calibrating WDS for valve settings on the basis of observed flow and roughness coefficient. From the obtained results it is observed that, controllers are capable of achieving the target flow to all the GLRs with acceptable difference between the flow meter readings and the simulated flow. After calibrating any real WDS to the field observed data, it will be useful for water authorities if the consumer demands are met up to certain extent. This can be achieved by using the concept of equitable distribution of water to different consumers. In the urban cities of developing countries, often large quantities of water are supplied to only a few consumers, leading to inequitable water supply. It is a well known fact that quantity of water supplied from the source is not distributed equitably among the consumers. Aged pipelines pump failures, improper management of water resources are some of the main reasons for it. Equitable water to different consumers can be provided by operating the system in an efficient manner. Most of the urban cities receive water from the source to intermediate reservoirs and from these reservoirs water is supplied to consumers. Therefore, to achieve equitable water supply, these two supply levels have to be controlled using different concepts/ techniques. The water requirement of each of the reservoirs has to be calculated, which may depend on the number of consumers and consumer category. Each reservoir should receive its share of water to satisfy its consumer demand and also there must be provision to accommodate shortages, if any. The calibrated model of Bangalore WDS is used to achieve equitable water supply quantity to different zones of Bangalore city. The city has large undulating terrain among different zones which leads to unequal distribution of water. Dynamic Inversion (DI) nonlinear controller with Proportional Integral Derivative (PID) features (DI-PID) is used for valve throttling to achieve the target flows to different zones/reservoirs of the city at different levels. Equitable water distribution to different reservoirs, when a part of the source fails to supply water is also discussed in this thesis. From the obtained results it is observed that, controllers were responding in all the cases in different levels of targets for such a huge network. When there is change in supply pattern to achieve the equitable supply of water to different zones, the hydraulics of the WDS will change. Therefore, it is necessary to understand whether the system is able to handle these changes. The concept of reliability can be used to analyse the performance of WDS for wide range of operating conditions. Reliability analysis of a WDS for both normal and likely to occur situations will give a better quality of service to its consumers. Calculating both hydraulic and mechanical reliability is important as the chances of occurrence of both the failure scenarios are equal in a WDS. In the present study, a methodology is presented to model the nodal, system and total reliability for water supply networks by considering the hydraulic and mechanical failure scenarios. These two reliability measures together give the total reliability of the system. Analysing a real and complex WDS for the probable chances of occurrence of the failure scenarios; and then to anlyse the total reliability of the system is not reported in the literature and this analysis is carried out in the present study for Bangalore city WDS. The hydraulics of the system for all the operating conditions is analysed using EPANET. Hydraulic reliability is calculated by varying the uncertain independent parameters (demand, roughness and source water) and mechanical reliability is calculated by assuming system component failures. The system is analysed for both the reliability scenarios by considering different chances of failure that may occur in a real WDS; and hence the total reliability is calculated by making different combinations of hydraulic and mechanical failure scenarios. Sensitivity analysis for all the zones is also carried out to understand the behavior of different demand points for large fluctuation in hydraulics of the system. From the study, it is observed that, Hydraulic reliability decreases as the demand variation increases. But, as the roughness variation increases, there is no much change in the nodal or system reliability. Consumer demand or reliability of the WDS can be increased by saving the water lost in the system. This can be achieved by tracking the water parcel from the source till the consumer end, which will give an idea about the performance of different stages and zones in achieving the target flows. Huge quantity of water is lost in WDS and hence it is necessary to account for the water lost at different levels, hence the system can be managed in a better way. In most of the intermittent water supply systems demand is controlled by supply side; there is also a need to understand the demand variation at the consumer end which in turn affects the supply. Matching this varied supply-demand gap at various levels is challenging task. To get a better control of such problem, water balance (WB) equations need to be derived at various levels. When we derive these WB equations it should be emphasized that UFW is one of the major component of this equation. Given this back ground of the complex problem, for a typical city like Bangalore, an attempt is made to derive WB equations at various levels. In the present study, stage-wise and zone-wise WB is analysed for different months based on the flow meter readings. The conceptual model developed is calibrated, validated and also the performance of the model is analysed by giving a chance of error in the flow measurement. Based on all the above observations, stage-wise and zone-wise water supply weights are also calculated. From the study it is found that, there is no much loss of water in all the four stages of supply. Water loss is minimal of about 3 % till water reaches from source to GLRs. Water is transferred between the stages during some days of the month, may be due to shortage of water or due to unexpected demand. Huge quantity of water is lost in the distribution main which is of about 40 to 45% for all the moths which is analysed. This type of model will be extremely useful for water supply managers to manage their resources more efficiently and this study is discussed in detail as a part of this thesis. As mentioned above, huge quantity of groundwater is used in urban cities and the quantity of water extracted is not accounted. In the present study, zone wise and sub zone-wise piped water and ground water used in different parts of the cities is analysed with the help of available data. From the study it is observed that, the quantity of piped water supply and UFW is consistent for the time period analysed and the quantity of water withdrawn from the borewells are varying considerably depending on the yield of the borewlls in different zones. The main components of urban water supply are piped water, ground water, rainfall and runoff generated, UFW, waste water produced and other water quantities which may be minute. In future, to manage the water resources properly, integrated water management is necessary in city scale which will give an idea about the total water produced and the water utilized at the consumer end. Therefore, integrated water management concept is carried out in Hebbal region, (a small part of Bangalore) using the available data. From the analysis we noticed that, domestic water supplied to North sub zones are better when comparing to East sub zones. This type of total water balance can be studied in other parts of Bangalore, to understand the behavior of different water components and to make better decisions. The developed model, analysis and operating conditions of this study can be applied to other similar cities like Bangalore. This type of study may be useful to water authorities for better control of the resources, or in making better decisions and these types of models will act as decision support systems.

Page generated in 0.1439 seconds