Spelling suggestions: "subject:"waterman"" "subject:"paterman""
11 |
Finding Song Melody Similarities Using a DNA String Matching AlgorithmFrey, Jeffrey Daniel 23 April 2008 (has links)
No description available.
|
12 |
A PAIRWISE COMPARISON OF DNA SEQUENCE ALIGNMENT USING AN OPENMP IMPLEMENTATION OF THE SWAMP PARALLEL SMITH-WATERMAN ALGORITHMCuevas, Tristan Lee 22 April 2015 (has links)
No description available.
|
13 |
Generalizing the Utility of Graphics Processing Units in Large-Scale Heterogeneous Computing SystemsXiao, Shucai 03 July 2013 (has links)
Today, heterogeneous computing systems are widely used to meet the increasing demand for high-performance computing. These systems commonly use powerful and energy-efficient accelerators to augment general-purpose processors (i.e., CPUs). The graphic processing unit (GPU) is one such accelerator. Originally designed solely for graphics processing, GPUs have evolved into programmable processors that can deliver massive parallel processing power for general-purpose applications.
Using SIMD (Single Instruction Multiple Data) based components as building units; the current GPU architecture is well suited for data-parallel applications where the execution of each task is independent. With the delivery of programming models such as Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), programming GPUs has become much easier than before. However, developing and optimizing an application on a GPU is still a challenging task, even for well-trained computing experts. Such programming tasks will be even more challenging in large-scale heterogeneous systems, particularly in the context of utility computing, where GPU resources are used as a service. These challenges are largely due to the limitations in the current programming models: (1) there are no intra-and inter-GPU cooperative mechanisms that are natively supported; (2) current programming models only support the utilization of GPUs installed locally; and (3) to use GPUs on another node, application programs need to explicitly call application programming interface (API) functions for data communication.
To reduce the mapping efforts and to better utilize the GPU resources, we investigate generalizing the utility of GPUs in large-scale heterogeneous systems with GPUs as accelerators. We generalize the utility of GPUs through the transparent virtualization of GPUs, which can enable applications to view all GPUs in the system as if they were installed locally. As a result, all GPUs in the system can be used as local GPUs. Moreover, GPU virtualization is a key capability to support the notion of "GPU as a service." Specifically, we propose the virtual OpenCL (or VOCL) framework for the transparent virtualization of GPUs. To achieve good performance, we optimize and extend the framework in three aspects: (1) optimize VOCL by reducing the data transfer overhead between the local node and remote node; (2) propose GPU synchronization to reduce the overhead of switching back and forth if multiple kernel launches are needed for data communication across different compute units on a GPU; and (3) extend VOCL to support live virtual GPU migration for quick system maintenance and load rebalancing across GPUs.
With the above optimizations and extensions, we thoroughly evaluate VOCL along three dimensions: (1) show the performance improvement for each of our optimization strategies; (2) evaluate the overhead of using remote GPUs via several microbenchmark suites as well as a few real-world applications; and (3) demonstrate the overhead as well as the benefit of live virtual GPU migration. Our experimental results indicate that VOCL can generalize the utility of GPUs in large-scale systems at a reasonable virtualization and migration cost. / Ph. D.
|
14 |
Searching Biological Sequence Databases Using Distributed Adaptive ComputingPappas, Nicholas Peter 06 February 2003 (has links)
Genetic research projects currently can require enormous computing power to processes the vast quantities of data available. Further, DNA sequencing projects are generating data at an exponential rate greater than that of the development microprocessor technology; thus, new, faster methods and techniques of processing this data are needed. One common type of processing involves searching a sequence database for the most similar sequences. Here we present a distributed database search system that utilizes adaptive computing technologies. The search is performed using the Smith-Waterman algorithm, a common sequence comparison algorithm. To reduce the total search time, an initial search is performed using a version of the algorithm, implemented in adaptive computing hardware, which is designed to efficiently perform the initial search. A final search is performed using a complete version of the algorithm. This two-stage search, employing adaptive and distributed hardware, achieves a performance increase of several orders of magnitude over similar processor based systems. / Master of Science
|
15 |
The Quine-Duhem Thesis: Two bayesian ConceptualizationsLagerlöf, Julius January 2024 (has links)
In science all hypothesis-testing rely on a multitude of background assumptions.However, the Quine-Duhem thesis tells us that upon refutation, or disconfirma-tion, there is no principled way of determining which of these assumptions shouldbe abandoned in light of the evidence. Attempts have been made to provideBayesian models that can provide a logic to resolve this problem. In this paperI identify, describe, compare and evaluate two such models. The first is dueto John Dorling and the second to Michael Strevens. I argue that Dorling’ssolution to the problem presented by the Quine-Duhem thesis is preferable tothat proposed by Strevens. / <p>Spring semester 2024</p>
|
16 |
STAIRS : Data reduction strategy on genomicsFerrer, Samuel January 2019 (has links)
Background. An enormous accumulation of genomic data has been taking place over the last ten years. This makes the activities of visualization and manual inspection, key steps in trying to understand large datasets containing DNA sequences with millions of letters. This situation has created a gap between data complexity and qualified personnel due to the need of trading between visualization, reduction capacity and exploratory functions, features rarely achieved by existing tools, such as SRA toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/), for instance. A novel approach to the problem of genomic analysis and visualization was pursued in this project, by means of STrAtified Interspersed Reduction Structures (STAIRS). Result. Ten weeks of intense work resulted in novel algorithms to compress data, transform it into stairs vectors and align them. Smith–Waterman and Needleman–Wunsch algorithms have been specially modified for this purpose and the application brought about statistical performance and behavioural charts.
|
17 |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicoresRucci, Enzo 30 July 2013 (has links)
Una de las áreas de mayor interés y crecimiento en los últimos años dentro del procesamiento paralelo es la del tratamiento de grandes volúmenes de datos, tales como las secuencias de ADN. El tipo de procesamiento extensivo de comparación para analizar patrones genéticos requiere un esfuerzo importante en el desarrollo de algoritmos paralelos eficientes.
El alineamiento de secuencias de ADN representa una de las operaciones más importantes dentro de la bioinformática. En 1981, Smith y Waterman desarrollaron un método para el alineamiento local de secuencias. Sin embargo, en la práctica se emplean diversas heurísticas en su lugar, debido a los requerimientos de procesamiento y de memoria del algoritmo Smith-Waterman. Si bien son más rápidas, las heurísticas no garantizan que el alineamiento óptimo sea encontrado. Es por ello que resulta interesante estudiar cómo aplicar la potencia de cómputo de plataformas paralelas actuales de manera de acelerar el proceso de alinear secuencias sin perder precisión en los resultados.
Los niveles insostenibles de generación de calor y consumo de energía que se presentan al escalar al máximo la velocidad de los procesadores mononúcleos motivaron el surgimiento de los procesadores de múltiples núcleos (multicore). Un procesador multicore integra dos o más núcleos computacionales dentro de un único chip y, si bien estos son más simples y menos veloces, al combinarlos permiten mejorar el rendimiento global del procesador y al mismo tiempo hacerlo más eficiente energéticamente. Al incorporar este tipo de procesadores a los clusters convencionales, se da origen a una arquitectura conocida como cluster de multicores, que combina memoria compartida y distribuida, y donde la comunicación entre las diferentes unidades de procesamiento resulta ser heterogénea.
En este trabajo se presenta un algoritmo paralelo distribuido para el alineamiento de secuencias de ADN basado en el método Smith-Waterman para ser ejecutado sobre las arquitecturas de cluster actuales. Además, se realiza un análisis de rendimiento del mismo. Por último, se presentan las conclusiones y las posibles líneas de trabajo futuro.
|
18 |
Local Alignment of Gradient Features for Face Photo and Face Sketch RecognitionAlex, Ann Theja January 2012 (has links)
No description available.
|
19 |
Arquiteturas em hardware para o alinhamento local de sequências biológicas / Hardware architectures for local biological sequence alignmentMallmann, Rafael Mendes January 2010 (has links)
Bancos de dados biológicos utilizados para comparação e alinhamento local de sequências tem crescido de forma exponencial. Isso popularizou programas que realizam buscas nesses bancos. As implementações dos algoritmos de alinhamento de sequências Smith- Waterman e distância Levenshtein demonstraram ser computacionalmente intensivas e, portanto, propícias para aceleração em hardware. Este trabalho descreve arquiteturas em hardware dedicado prototipadas para FPGA e ASIC para acelerar os algoritmos Smith- Waterman e distância Levenshtein mantendo os mesmos resultados obtidos por softwares. Descrevemos uma nova e eficiente unidade de processamento para o cálculo do Smith- Waterman utilizando affine gap. Também projetamos uma arquitetura que permite particionar as sequências de entrada para a distância Levenshtein em um array sistólico de tamanho fixo. Nossa implementação em FPGA para o Smith-Waterman acelera de 275 a 494 vezes o algoritmo em relação a um computador com processador de propósito geral. Ainda é 52 a 113% mais rápida em relação, segundo nosso conhecimento, as mais rápidas arquiteturas recentemente publicadas. / Bioinformatics databases used for sequence comparison and local sequence alignment are growing exponentially. This has popularized programs that carry out database searches. Current implementations of sequence alignment methods based on Smith- Waterman and Levenshtein distance have proven to be computationally intensive and, hence, amenable for hardware acceleration. This Msc. Thesis describes an FPGA and ASIC based hardware implementation designed to accelerate the Smith-Waterman and Levenshtein distance maintaining the same results yielded by general softwares. We describe an new efficient Smith-Waterman affine gap process element and a new architecture to partitioning and maping the Levenshtein distance into fixed size systolic arrays. Our FPGA Smith-Waterman implementation delivers 275 to 494-fold speed-up over a standard desktop computer and is also about 52 to 113% faster, to the best of our knowledge, than the fastest implementation in a most recent family of accelerators.
|
20 |
Arquiteturas em hardware para o alinhamento local de sequências biológicas / Hardware architectures for local biological sequence alignmentMallmann, Rafael Mendes January 2010 (has links)
Bancos de dados biológicos utilizados para comparação e alinhamento local de sequências tem crescido de forma exponencial. Isso popularizou programas que realizam buscas nesses bancos. As implementações dos algoritmos de alinhamento de sequências Smith- Waterman e distância Levenshtein demonstraram ser computacionalmente intensivas e, portanto, propícias para aceleração em hardware. Este trabalho descreve arquiteturas em hardware dedicado prototipadas para FPGA e ASIC para acelerar os algoritmos Smith- Waterman e distância Levenshtein mantendo os mesmos resultados obtidos por softwares. Descrevemos uma nova e eficiente unidade de processamento para o cálculo do Smith- Waterman utilizando affine gap. Também projetamos uma arquitetura que permite particionar as sequências de entrada para a distância Levenshtein em um array sistólico de tamanho fixo. Nossa implementação em FPGA para o Smith-Waterman acelera de 275 a 494 vezes o algoritmo em relação a um computador com processador de propósito geral. Ainda é 52 a 113% mais rápida em relação, segundo nosso conhecimento, as mais rápidas arquiteturas recentemente publicadas. / Bioinformatics databases used for sequence comparison and local sequence alignment are growing exponentially. This has popularized programs that carry out database searches. Current implementations of sequence alignment methods based on Smith- Waterman and Levenshtein distance have proven to be computationally intensive and, hence, amenable for hardware acceleration. This Msc. Thesis describes an FPGA and ASIC based hardware implementation designed to accelerate the Smith-Waterman and Levenshtein distance maintaining the same results yielded by general softwares. We describe an new efficient Smith-Waterman affine gap process element and a new architecture to partitioning and maping the Levenshtein distance into fixed size systolic arrays. Our FPGA Smith-Waterman implementation delivers 275 to 494-fold speed-up over a standard desktop computer and is also about 52 to 113% faster, to the best of our knowledge, than the fastest implementation in a most recent family of accelerators.
|
Page generated in 0.0347 seconds