• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Deterministic Model for Semi-Arid Catchments

Nnaji, S., Davis, D. R., Fogel, M. M. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / Semiarid environments exhibit certain hydrologic characteristics which must be taken into consideration for the effective modeling of the behavior of catchments in these areas. Convective storms, which cause most of the runoff, occur in high intensity and short duration during the summer months and are highly localized so that only a small portion of the catchment actually contributes flow to the storm hydrograph. Also, streams in semiarid catchments are ephemeral with flow occurring only about 1 percent of the time. This study attempts to develop a simple synthetic catchment model that reflects these features of the semiarid environment and for which (1) the simplifying assumptions do not preclude the inclusion of the important components of the runoff process, and (2) parameters of the equations representing the component processes have physical interpretation and are obtainable from basin characteristics so that the model may be applicable to ungaged sites. A reductionist approach is then applied in which the entire catchment is subdivided into a finite number of meshes and the various components of the runoff phenomenon are delineated within each mesh as independent functions of the catchment. Simplified forms of the hydrodynamic equations of flow are used to route flow generated from each mesh to obtain a complete hydrograph at the outlet point.
12

Geomorphic Features Affecting Transmission Loss Potential

Wallace, D. E., Lane, L. J. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Water yield studies and flood control surveys often necessitate estimating transmission losses from ungaged watersheds. There is an immediate need for an economical method that provides the required accuracy. Analysis of relations between stream order, drainage area, and volume of channel alluvium existing in the various orders is one means of estimating loss potential. Data needed for the stream order survey are taken from aerial photos. Stream order is analyzed using stereophoto maps. Stream lengths taken from the maps are combined with average channel width and depth data (determined by prior surveys) to estimate volumes of alluvium involved. The volume of channel alluvium in a drainage network is directly related to the stream order number of its channels. Thus, a volume of alluvium within a drainage network (with a known transmission loss potential) may be estimated by knowing the order of each length of channel and the drainage areas involved. In analyzing drainage areas of 56-mi² or less, 70 to 75 percent of the total drainage network length is contained within first and second order channels; yet, these constitute less than 10 percent of the total transmission loss potential of the areas. Analysis of stream order and drainage area versus volume of alluvium relations allows preliminary estimates of transmission loss potential to be made for ungaged areas.

Page generated in 0.0519 seconds