• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 38
  • 16
  • 8
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 227
  • 227
  • 40
  • 35
  • 31
  • 31
  • 31
  • 31
  • 27
  • 25
  • 24
  • 24
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Atratores para equações de ondas não autônomas com condição de fronteira da acústica / Attractors for non-autonomous wave equations with acoustic boundary condition

Souza, Thales Maier de 13 January 2017 (has links)
Esta tese é dedicada ao estudo de uma classe de equações de ondas com condições de fronteira da acústica. Investigamos a dinâmica assintótica de tais equações no caso em que o sistema está sujeito à ação de uma força externa não autônoma. Nessa situação, adicionando uma dissipação fraca, provamos que o problema gera um processo de evolução dissipativo. O nosso objetivo é então o estudo da existência de atratores não autônomos. Num primeiro momento estabelecemos a existência de um atrator do tipo \\pullback\", minimal, dentro de um universo de conjuntos temperados. Também estudamos a semicontinuidade superior dos atratores quando a perturbação não autônoma tende para zero. Nosso resultado permite considerar forcas externas não limitadas e perturbações não lineares com crescimento crítico (de Sobolev). Num segundo momento, fazemos um estudo sobre a existência de atratores uniformes. Em vista de resultados recentes de Zelik (2015), consideramos forcas externas mais gerais do que a dita classe das forcas compactas por translação (translation-compact). Parte desta tese foi aceita para publicação na revista \\Differential and Integral Equations\" sob o ttulo \\Pullback dynamics of non-autonomous wave equations with acoustic boundary condition\". / This thesis is concerned with the study of a class of wave equations with acoustic boundary conditions. We investigate the long-time dynamics of such equations in the case where the system is subject to a non-autonomous external force. In this situation, by adding a weak dissipation, we prove that the problem generates a dissipative evolution process. Our goal is then the existence of non-autonomous attractors. In this direction, we first establishes the existence of a minimal pullback attractor within a universe of tempered sets. We also studied the upper semi-continuity of attractors when the non-autonomous perturbation tends to zero. Our result allows to consider unbounded external forces and nonlinear perturbation with critical (Sobolev) growth. Secondly, we establish the existence of uniform attractors, as well. In view of recent results Zelik (2015) we consider more general external forces than the so called class of translation-compact forces. Part of this thesis was accepted for publication in the journal \\Differential and Integral Equations\" under the title \\Pullback dynamics of non-autonomous wave equations with acoustic boundary condition\".
122

Off-axis multimode light beam propagation in tapered lenslike media including those with spatial gain or loss variation

Tovar, Anthony Alan 01 January 1988 (has links)
The propagation of light beams in inhomogeneous dielectric media is considered. The derivation begins with first principles and remains general enough to include off-axis asymmetric multimode input beams in tapered lenslike media with spatial variations of gain or loss. The tapering of lenslike media leads to a number of important applications. A parabolic taper is proposed as a model for a heated axially stretched fiber taper, and beams in such media are fully characterized. Other models are proposed by the concatenation of a parabola with other taper functions.
123

Numerische Behandlung zeitabhängiger akustischer Streuung im Außen- und Freiraum

Gruhne, Volker 23 April 2013 (has links) (PDF)
Lineare hyperbolische partielle Differentialgleichungen in homogenen Medien, beispielsweise die Wellengleichung, die die Ausbreitung und die Streuung akustischer Wellen beschreibt, können im Zeitbereich mit Hilfe von Randintegralgleichungen formuliert werden. Im ersten Hauptteil dieser Arbeit stellen wir eine effiziente Möglichkeit vor, numerische Approximationen solcher Gleichungen zu implementieren, wenn das Huygens-Prinzip nicht gilt. Wir nutzen die Faltungsquadraturmethode für die Zeitdiskretisierung und eine Galerkin-Randelement-Methode für die Raumdiskretisierung. Mit der Faltungsquadraturmethode geht eine diskrete Faltung der Faltungsgewichte mit der Randdichte einher. Bei Gültigkeit des Huygens-Prinzips konvergieren die Gewichte exponentiell gegen null, sofern der Index hinreichend groß ist. Im gegenteiligen Fall, das heißt bei geraden Raumdimensionen oder wenn Dämpfungseffekte auftreten, kann kein Verschwinden der Gewichte beobachtet werden. Das führt zu Schwierigkeiten bei der effizienten numerischen Behandlung. Im ersten Hauptteil dieser Arbeit zeigen wir, dass die Kerne der Faltungsgewichte in gewisser Weise die Fundamentallösung im Zeitbereich approximieren und dass dies auch zutrifft, wenn beide bezüglich der räumlichen Variablen abgeleitet werden. Da die Fundamentallösung zudem für genügend große Zeiten, etwa nachdem die Wellenfront vorbeigezogen ist, glatt ist, schließen wir Gleiches auch in Bezug auf die Faltungsgewichte, die wir folglich mit hoher Genauigkeit und wenigen Interpolationspunkten interpolieren können. Darüber hinaus weisen wir darauf hin, dass zur weiteren Einsparung von Speicherkapazitäten, insbesondere bei Langzeitexperimenten, der von Schädle et al. entwickelte schnelle Faltungsalgorithmus eingesetzt werden kann. Wir diskutieren eine effiziente Implementierung des Problems und zeigen Ergebnisse eines numerischen Langzeitexperimentes. Im zweiten Hauptteil dieser Arbeit beschäftigen wir uns mit Transmissionsproblemen der Wellengleichung im Freiraum. Solche Probleme werden gewöhnlich derart behandelt, dass der Freiraum, wenn nötig durch Einführen eines künstlichen Randes, in ein unbeschränktes Außengebiet und ein beschränktes Innengebiet geteilt wird mit dem Ziel, eventuelle Inhomogenitäten oder Nichtlinearitäten des Materials vollständig im Innengebiet zu konzentrieren. Wir werden eine Lösungsstrategie vorstellen, die es erlaubt, die aus der Teilung resultierenden Teilprobleme so weit wie möglich unabhängig voneinander zu behandeln. Die Kopplung der Teilprobleme erfolgt über Transmissionsbedingungen, die auf dem ihnen gemeinsamen Rand vorgegeben sind. Wir diskutieren ein Kopplungsverfahren, das auf verschiedene Diskretisierungsschemata für das Innen- und das Außengebiet zurückgreift. Wir werden insbesondere ein explizites Verfahren im Innengebiet einsetzen, im Gegensatz zum Außengebiet, bei dem wir ein auf ein Mehrschrittverfahren beruhendes Faltungsquadraturverfahren nutzen. Die Kopplung erfolgt nach der Strategie von Johnson und Nédélec, bei der die direkte Randintegralmethode zum Einsatz kommt. Diese Strategie führt auf ein unsymmetrische System. Wir analysieren das diskrete Problem hinsichtlich Stabilität und Konvergenz und unterstreichen die Einsatzfähigkeit des Kopplungsalgorithmus mit der Durchführung numerischer Experimente.
124

Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations

Meral, Gulnihal 01 May 2009 (has links) (PDF)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quadrature method (DQM) is used for the spatial discretization of IBVPs and Cauchy problems defined by the nonlinear reaction-diffusion and wave equations. The DRBEM and DQM applications result in first and second order system of ordinary differential equations in time. These systems are solved with three different time integration methods, the finite difference method (FDM), the least squares method (LSM) and the finite element method (FEM) and comparisons among the methods are made. In the FDM a relaxation parameter is used to smooth the solution between the consecutive time levels. It is found that DRBEM+FEM procedure gives better accuracy for the IBVPs defined by nonlinear reaction-diffusion equation. The DRBEM+LSM procedure with exponential and rational radial basis functions is found suitable for exterior wave problem. The same result is also valid when DQM is used for space discretization instead of DRBEM for Cauchy and IBVPs defined by nonlinear reaction-diffusion and wave equations.
125

Determination of dispersion curves for acoustoelastic lamb wave propagation

Gandhi, Navneet 30 August 2010 (has links)
The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under biaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we review the theory of acoustoelastic and develop theory for acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under biaxial tension. We also develop an approximate method using the effective elastic constants (EECs) and show that existing commercial tools to generate dispersion curves can be used under restricted conditions to describe wave propagation in biaxially stressed plates. Predictions of changes in phase velocity as a function of propagation direction using theory and the EEC method are compared to experimental results for a single wave mode.
126

Weakly non-local arbitrarily-shaped absorbing boundary conditions for acoustics and elastodynamics theory and numerical experiments

Lee, Sanghoon 28 August 2008 (has links)
Not available / text
127

Two Dimensional Finite Volume Model for Simulating Unsteady Turbulent Flow and Sediment Transport

Yu, Chunshui January 2013 (has links)
The two-dimensional depth-averaged shallow water equations have attracted considerable attentions as a practical way to solve flows with free surface. Compared to three-dimensional Navier-Stokes equations, the shallow water equations give essentially the same results at much lower cost. Solving the shallow water equations by the Godunov-type finite volume method is a newly emerging area. The Godunov-type finite volume method is good at capturing the discontinuous fronts in numerical solutions. This makes the method suitable for solving the system of shallow water equations. In this dissertation, both the shallow water equations and the Godunov-type finite volume method are described in detail. A new surface flow routing method is proposed in the dissertation. The method does not limit the shallow water equations to open channels but extends the shallow water equations to the whole domain. Results show that the new routing method is a promising method for prediction of watershed runoff. The method is also applied to turbulence modeling of free surface flow. The κ - ε turbulence model is incorporated into the system of shallow water equations. The outcomes prove that the turbulence modeling is necessary for calculation of free surface flow. At last part of the dissertation, a total load sediment transport model is described and the model is tested against 1D and 2D laboratory experiments. In summary, the proposed numerical method shows good potential in solving free surface flow problems. And future development will be focusing on river meandering simulation, non-equilibrium sediment transport and surface flow - subsurface flow interaction.
128

Numerical simulation of shear instability in shallow shear flows

Pinilla, Camilo Ernesto. January 2008 (has links)
The instabilities of shallow shear flows are analyzed to study exchanges processes across shear flows in inland and coastal waters, coastal and ocean currents, and winds across the thermal-and-moisture fronts. These shear flows observed in nature are driven by gravity and governed by the shallow water equations (SWE). A highly accurate, and robust, computational scheme has been developed to solve these SWE. Time integration of the SWE was carried out using the fourth-order Runge-Kutta scheme. A third-order upwind bias finite difference approximation known as QUICK (Quadratic Upstream Interpolation of Convective Kinematics) was employed for the spatial discretization. The numerical oscillations were controlled using flux limiters for Total Variation Diminishing (TVD). Direct numerical simulations (DNS) were conducted for the base flow with the TANH velocity profile, and the base flow in the form of a jet with the SECH velocity profile. The depth across the base flows was selected for the' balance of the driving forces. In the rotating flow simulation, the Coriolis force in the lateral direction was perfectly in balance with the pressure gradient across the shear flow during the simulation. The development of instabilities in the shear flows was considered for a range of convective Froude number, friction number, and Rossby number. The DNS of the SWE has produced linear results that are consistent with classical stability analyses based on the normal mode approach, and new results that had not been determined by the classical method. The formation of eddies, and the generation of shocklets subsequent to the linear instabilities were computed as part of the DNS. Without modelling the small scales, the simulation was able to produce the correct turbulent spreading rate in agreement with the experimental observations. The simulations have identified radiation damping, in addition to friction damping, as a primary factor of influence on the instability of the shear flows admissible to waves. A convective Froude number correlated the energy lost due to radiation damping. The friction number determined the energy lost due to friction. A significant fraction of available energy produced by the shear flow is lost due the radiation of waves at high convective Froude number. This radiation of gravity waves in shallow gravity-stratified shear flow, and its dependence on the convective Froude number, is shown to be analogous to the Mach-number effect in compressible flow. Furthermore, and most significantly, is the discovery from the simulation the crucial role of the radiation damping in the development of shear flows in the rotating earth. Rings and eddies were produced by the rotating-flow simulations in a range of Rossby numbers, as they were observed in the Gulf Stream of the Atlantic, Jet Stream in the atmosphere, and various fronts across currents in coastal waters.
129

Radar Propagation Modelling Using The Split Step Parabolic Equation Method

Turkboylari, Alpaslan 01 January 2004 (has links) (PDF)
This document describes radar propagation modelling using split step parabolic wave equation (PWE) method. A computer program using Fourier split-step (FSS) marching technique is developed for predicting the electromagnetic wave propagation in troposphere. The program allows specification of frequency, polarization, antenna radiation pattern, antenna altitude, elevation angle and terrain profile. Both staircase terrain modelling and conformal mapping are used to model the irregular terrain. Mixed Fourier transform is used to implement the impedance boundary conditions. The conditions and the limits of different approximations are stated. The propagation code, RPPT (Radar Propagation Prediction Tool) is developed in Matlab 6.0 with a user friendly GUI. Different PWE methods can be selected in RPPT for different applications. The results are presented as one-way propagation factor and path loss in decibels versus range.Comparisons are made between different PWE techniques and other propagation models to demonstrate the ability and accuracy of the present model to accommodate various situations. It is assumed that the reader is familiar with the tropospheric propagation.
130

Nonlinear convective instability of fronts a case study /

Ghazaryan, Anna R., January 2005 (has links)
Thesis (Ph.D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains ix, 176 p.; also includes graphics. Includes bibliographical references (p. 172-176). Available online via OhioLINK's ETD Center

Page generated in 0.0765 seconds