• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and experimental evaluation of a unidirectional flow collective air pumps wave energy converter

Rodriguez-Macedo, Julio Cesar 08 January 2018 (has links)
Commercial viability of Wave Energy Converters (WEC) depends on addressing not only the energetic effciency, but also in solving the practical issues related to manufacturing methods, access to technology, handling, transportation and installation, operation and maintenance, impact on marine life and most importantly the cost per kW-h. The UFCAP WEC is one concept which has the potential to facilitate handling, manufacturing, and installation activities as well as to be able to lower the current wave energy cost per kW-h, however its feasibility had not been properly assessed nor proved. It consists of multiple interconnected Oscillating Water Columns (OWC) chambers, it is modular, and simple, with no-moving parts in contact with the water and can use a simpler one-direction turbine which is more economic, and more effcient than self-rectifying turbines used in most of the OWCs devices. Testing of the device to fully assess its feasibility required a low pressure check-valve, and a customized turbine which were developed during the present work. Check-valves are widely used in the industry for medium or high-pressures, but were not available at all for large-flows with low-pressure-differences. A novel check-valve was devised for this application, along with the scaled UFCAP prototypes developed to be tested in a wave-flume and in the ocean to validate UFCAPs concept feasibility, and identify critical design parameters and features such as the conduit/air-chamber ratio. Ocean tests allowed to observe performance at component and assembly levels, learning new failure-modes and stablishing best-practices for future deployments. Testing confirmed the UFCAP WEC is not only an idea, but a concept which works and can generateing electricity at a competitive cost. / Graduate
2

The Efficacy and Design of Coastal Protection Using Large Woody Debris

Wilson, Jessica 16 December 2020 (has links)
Those who frequent the coastline may be accustomed to seeing driftwood washed onshore, some of it having seemingly found a home there for many years, others having been freshly deposited during the last set of storms; However, if a passerby were to take a closer look at the driftwood on the coastline, they may notice that some of these logs – also known as Large Woody Debris (LWD) – are anchored in place, a practice which is generally used for the purpose of stabilizing the shoreline or reducing wave-induced flooding. Records of existing anchored LWD project sites date back to 1997 and anecdotal evidence suggests that the technique has been used since the mid-1900’s in coastal British Columbia (BC), Canada, and Washington State, USA. Now, with an increased demand for natural and nature-based solutions, the technique is again gaining popularity. Despite this, the design of anchored LWD has largely been based on anecdotal observations and experience, as well as a continuity of design practices from the river engineering field. To date, there is no known peer-reviewed literature on the design or efficacy of LWD protection systems in a coastal environment. In 2019, the “Efficacy and Design of Coastal Protection using Large Woody Debris” research project was initiated to determine if LWD are effective at stabilizing the shoreline under wave action, if they are effective at reducing wave run-up, and if they are durable enough to meet engineering requirements for shore protection. In addition, the project aimed to determine the optimum configuration of LWD for design purposes. To meet these objectives, this study included the following work: (1) field studies of existing LWD installations, (2) experimental modeling of beach morphology with and without LWD structures, (3) experimental modeling of wave run-up with and without LWD structures, and (4) development of preliminary design guidance. The first phase of the project included field investigations at 15 existing anchored LWD sites in coastal BC and Washington State. Site characteristics, design techniques, and durability indicators were examined and correlated to a new design life parameter: ‘Effective Life’. Six primary installation techniques were observed: Single, Multiple, Benched, Stacked, Matrix, and Groyne. Observed durability and/or performance issues included: missing LWD, erosion, arson, wood decay, and anchor corrosion/damage. The Effective Life of anchored LWD was found to be strongly correlated to the tidal range and the upper beach slope for all installation types, and the LWD placement elevation relative to the beach crest elevation for single, shore-parallel structures. The many noted durability issues and ineffectiveness as mitigating erosion indicates that existing design methods for anchored LWD have not generally been effective at providing coastal protection and meeting engineering design life requirements. A comprehensive set of over 60 experimental tests were completed as part of the overall research program. Thirty-two (32) tests were analyzed as part of this study relating to the morphological response of a gravel beach with and without various LWD configurations. The tests were conducted within a wave flume at the National Research Council’s Ocean, Coastal and River Engineering Research Centre (NRC-OCRE), at a large scale (5:1) based on site characteristics and LWD design characteristics made during the previous field investigations. Tests were also conducted to assess experiment repeatability, sensitivity to test duration, sensitivity to wave height, wave period, and relative water level, influence of regular waves, and influence of log roughness. The position of the most seaward LWD (whether considering distance or elevation) was found to be strongly linked to morphological response. A theoretical relationship was developed between LWD elevation and sediment volume change. Configurations which included LWD placement below the still water level, such as the Benched configuration, were found to be most effective at stabilizing the beach profile. As part of the experimental modeling program, 24 tests were also conducted for the purpose of estimating the effect of LWD design configuration on wave run-up. In total, six different beach and LWD configurations were tested under a base set of four regular wave conditions. The study findings indicated that anchored LWD may increase wave run-up relative to a gravel beach with no structures. In particular, configurations with more logs tended to result in higher wave run-up. However, additional research is needed on the effect of LWD on wave run-up to confirm and expand these findings. There are a number of potential engineering, ecological, social, and economic benefits associated with anchored LWD installations if designed, installed, and monitored appropriately for the site conditions and user needs. To realize these potential benefits, significant additional research is needed on the topic. One of the most significant barriers to usage is a lack of information on how to effectively anchor LWD structures. However, this research project provides a baseline for future comprehensive studies on the effect and design of coastal protection using LWD. The project provides preliminary design considerations for the usage of LWD as coastal protection and contributes to the growing body of literature on nature-based solutions.
3

Morphodynamique de la zone de "swash" : étude en canal à houle par une méthode de stéréoscopie optique / Swash zone morphodynamics : wave flume investigation by an optical stereoscopic method

Astier, Jessica 28 April 2014 (has links)
Ce travail porte sur l’étude de l’évolution morphologique dans la zone de swash à haute résolution spatiale et temporelle afin de pouvoir analyser l’influence de la houle. Cette étude s’appuie sur deux campagnes de mesures menées dans le grand canal à houle CIEM (Barcelone), l’une avec application d’un forçage aléatoire érosif de type JONSWAP et l’autre avec application d’une série de forçages bichromatiques. L’originalité de l’étude proposée ici consiste en l’analyse, par une méthode de stéréoscopie optique, de l’évolution du fond avec une excellente précision tout en quantifiant précisément l’évolution des fronts d’eau sur une surface continue, la majorité des techniques de mesure ne donnant en général accès qu’à des relevés ponctuels dans cette zone. La position du lit de sable est estimée avec une précision de quelques centaines de μm. Sur des temps longs, le forçage JONSWAP érosif engendre un recul global et quasi-homogène dans la zone de swash. Cependant, cette évolution ne semble pas influencer la réponse hydrodynamique qui reste similaire dans la zone de swash lorsque l’on répète la série. Ceci a été confirmé dans le cas des forçages bichromatiques, répétés sur des fonds différents. Au sein d’une série d’un forçage aléatoire, différentes échelles de temps sont observées : l’échelle gravitaire (période caractéristique du signal) et les ondes infragravitaires (large gamme d’événements plus longs). Cette coexistence de plusieurs échelles de temps a pu être associée à la forte variabilité du profil de plage, notamment dans la direction cross-shore. Le cas bichromatique montre quant à lui une convergence du profil de plage vers un état qui ne dépendrait que du forçage en entrée. L’interaction d’une seule onde infragravitaire avec l’onde gravitaire ne peut donc pas être responsable de la variabilité du fond observée avec le forçage aléatoire. En revanche, cette étude semble confirmer la présence d’événements particuliers à l’origine d’une forte modification du fond sableux. Le lien entre ces événements et l’interaction entre des événements hydrodynamiques spécifiques et la forme du fond n’est pas encore complètement établi. Enfin, pour le forçage aléatoire la variabilité transverse induite par les ondes courtes est forte alors qu’elle semble plus faible à l’échelle de l’onde longue. Pour le forçage bichromatique, cette variabilité transverse a également pu être observée mais son lien avec le forçage reste encore à élucider. / This study investigates the morphological evolution in the swash zone at high spatial and temporal resolution to be able to analyze the swell influence. The study is here based on two measurement campaigns in the large CIEM wave flume (Barcelona), using both a random erosive JONSWAP and bichromatics forcing. The originality of the proposed study lies on analysis, by an optical stereoscopic method, of bottom evolution with a very good precision while getting an accurate quantification of water fronts evolution on a continuous area, most of the measurement techniques generally allowing only to obtain punctual measurements in this area. The sand bed position is estimated with an accuracy of a few hundred μm. Over long periods, erosive JONSWAP forcing generates an overall and almost homogeneous backward movement in the swash area. However, this trend does not appear to influence the hydrodynamics response that remains similar in the swash area when the series is repeated. This was confirmed in the bichromatic forcings case, repeated on different bottoms. During a random forcing series, different time scales are observed : the gravity scale (characteristic period of the signal) and infragravity waves (wide range of longer events). This coexistence of several time scales could be associated with the observation of a strong variability of the beach profile, especially in the cross-shore direction. The bichromatic case shows meanwhile convergence of beach profile to a state that would depend only on forcing conditions. The interaction of a single infragravity wave with the gravitational wave can therefore not be responsible for the observed bottom variability with the random forcing. In contrast, the present study seems to confirm the presence of specific events responsible of a strong change in the sandy bottom. The link between these events and the hydrodynamic interaction between specific events and the bottom shape is not yet completely established. Finally, for the random forcing the transverse variability induced by short wave is strong as it seems weak at long wave time scale. For bichromatic forcing, the transverse variability has also been observed but its link with the forcing still remains to be elucidated.
4

Částice plovoucí na volné hladině vln / Floating particles at water waves free surface

Kupčíková, Laura January 2021 (has links)
This master’s thesis deals with analytical and numerical description of surface gravity waves. Wave theories and their influence on water particle movement is described in the theoretical part of the thesis. Water particle moves in the same direction as wave propagation and this phenomenon is called Stokes drift. It has a significant influence on sediment transport and floating particle movement at water free surface. The experimental part consists of wave profile monitoring and water particle tracking in a wave flume with wave generator and beach model. The experimental results are compared with numerical simulation performed in the ANSYS Fluent software. Finally, the wave profiles obtained from simulation are compared with experimental wave profiles extracted by digital image processing.
5

Size-selective sediment transport and cross-shore profile evolution in the nearshore zone

Srisuwan, Chatchawin 12 November 2012 (has links)
Cross-shore bathymetric evolution in the nearshore zone often leads to threatening consequences such as beach erosion and shoreline retreat that concern the coastal community. A new, comprehensive cross-shore morphodynamic model was developed that can be used to describe and predict these phenomena. The study included both physical and numerical models that were designed to focus on the influence of sediment size characteristics on the cross-shore sediment transport process. For a profile equilibrium timescale, three types of beach profiles with different sediment mixtures were simulated in a small-scale, random-wave flume laboratory using erosive, storm, and accretive wave conditions. Dynamic relationships between the sediment grain sorting and beach profile changes were found to be evident as size-graded sediment fractions tended to relocate to different energetic zones along the cross-shore profiles. Existing phase-averaged wave and circulation models were utilized together with several new intra-wave modules for predicting important hydrodynamic parameters that were validated using the experimental data. A novel, multi-size sediment transport model was formulated to compute individual transport rates of size-graded sediment fractions while accounting for their interaction and non-linear size dependencies. The model was coupled with a new grain sorting model that resolves cross-shore grain sorting and vertical grain lamination. Compared to a traditional modeling approach, the new comprehensive model proved to offer superior modeling accuracy for both profile evolution and sediment grain size change. The use of the model is most advantageous for a condition with intensive grain sorting, a common scenario on a natural beach profile. Equilibrium beach profile is also better simulated by the model as size-graded fractions are predicted to relocate to different zones where they could withstand local hydrodynamics. Other new components that also help improve the modeling capability include the terms for wave-breaking and bed-slope effects, wave-crest sediment flux, and acceleration-induced bottom-shear stress. Besides superior profile modeling accuracy, sediment size characteristics and their spatial and temporal variations are also a useful set of information provided by the new model.
6

Etude expérimentale des processus hydro-sédimentaires sous le déferlement de vagues irrégulières / An experimental study of flow and sediment transport processes below irregular breaking waves

Chassagneux, François-Xavier 08 March 2011 (has links)
Cette thèse présente une simulation, en canal à houle, des processus naturels hydrodynamiques etde transport sédimentaire de la zone de déferlement bathymétrique. L’analyse spatio-temporelle dela structure moyenne et instantanée de l’écoulement repose sur un jeu de mesures hauterésolutions.On effectue une étude des processus de couche limite et de l’impact des processus desurface libre sur le fond sédimentaire.Un profil de plage en forme de terrasse est engendré par le déferlement de séries de vagues irrégulières(JONSWAP) sur un fond mobile constitué de sédiments de faible densité (_ _ 1.19). Dans cesconditions, la mesure acoustique (ADVP) de profils de vitesse, de concentration et de flux de sédimentsest synchronisée à des séquences d’images vidéo et à des mesures de hauteurs de vagues.Une analyse de l’évolution des quantités moyennes hydrodynamiques et de transport solide est réaliséedans la zone de déferlement. Une analyse à l’échelle intra-vague aborde la structure del’écoulement sous le déferlement de vagues irrégulières. Enfin, on s’attache à une comparaison de lacontrainte au fond sous une vague déferlée calculée par des modèles physiques, à celle obtenue parmesures directes. / This thesis presents a wave channel simulation of the hydrodynamic and sediment transportprocesses in the wave breaking region. The spatio-temporal analysis of the mean and instantaneousflow structure relies on a full set of high resolution data. The study focuses on processes related tothe wave boundary layer and to the impact of surface breaking on the mobile bed.A terraced beach profile is generated by the breaking of irregular wave sequences (JONSWAP) on amobile bed constituted of low density sediments (_ _ 1.19). In these conditions, the acoustic measurementof velocity profiles, concentration profiles and sediment flux profiles are synchronised withsequences of video images and wave heights. An analysis of the evolution of mean hydrodynamicand sediment transport quantities is undertaken across the entire wave breaking zone. An intra-waveanalysis on the flow structure below irregular breaking waves is carried out. Finally, bed shear stressbelow a breaking wave predicted by different physical models and direct measurements, are comparedand discussed.

Page generated in 0.0461 seconds