• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Derivation of the Planck and Fine-Structure Constant from Assis’s Gravity Model

Tajmar, Martin 15 July 2015 (has links) (PDF)
Presently, Planck’s constant is a fundamental constant that can not be derived from other onstants. Assis developed a model based on an extended Weber-type potential energy, that allows calculating gravitational-type forces from neutral oscillating electric dipoles. Here we show that the maximum possible point-mass in his model equals the Planck mass which allows us to derive Planck’s constant and the fine-structure constant. We match the exact order of magnitude only requiring a pre-factor that is present in all Weber-type theories and has to be determined empirically. This classical model allows to link electromagnetic, gravitational and quantum properties with one approach.
2

Derivation of the Planck and Fine-Structure Constant from Assis’s Gravity Model

Tajmar, Martin January 2015 (has links)
Presently, Planck’s constant is a fundamental constant that can not be derived from other onstants. Assis developed a model based on an extended Weber-type potential energy, that allows calculating gravitational-type forces from neutral oscillating electric dipoles. Here we show that the maximum possible point-mass in his model equals the Planck mass which allows us to derive Planck’s constant and the fine-structure constant. We match the exact order of magnitude only requiring a pre-factor that is present in all Weber-type theories and has to be determined empirically. This classical model allows to link electromagnetic, gravitational and quantum properties with one approach.
3

The Planck Constant and the Origin of Mass due to a Higher Order Casimir Effect

Baumgärtel, C., Tajmar, Martin 10 July 2018 (has links) (PDF)
The Planck constant is one of the most important constants in nature, as it describes the world governed by quantum mechanics. However, it cannot be derived from other natural constants. We present a model from which it is possible to derive this constant without any free parameters. This is done utilizing the force between two oscillating electric dipoles described by an extension of Weber electrodynamics, based on a gravitational model by Assis. This leads not only to gravitational forces between the particles but also to a newly found Casimir-type attraction. We can use these forces to calculate the maximum point mass of this model which is equal to the Planck mass and derive the quantum of action. The result hints to a connection of quantum effects like the Casimir force and the Planck constant with gravitational ones and the origin of mass itself.
4

The Planck Constant and the Origin of Mass due to a Higher Order Casimir Effect

Baumgärtel, C., Tajmar, Martin 10 July 2018 (has links)
The Planck constant is one of the most important constants in nature, as it describes the world governed by quantum mechanics. However, it cannot be derived from other natural constants. We present a model from which it is possible to derive this constant without any free parameters. This is done utilizing the force between two oscillating electric dipoles described by an extension of Weber electrodynamics, based on a gravitational model by Assis. This leads not only to gravitational forces between the particles but also to a newly found Casimir-type attraction. We can use these forces to calculate the maximum point mass of this model which is equal to the Planck mass and derive the quantum of action. The result hints to a connection of quantum effects like the Casimir force and the Planck constant with gravitational ones and the origin of mass itself.

Page generated in 0.0678 seconds