• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple Solutions on a Ball for a Generalized Lane Emden Equation

Khanfar, Abeer 19 December 2008 (has links)
In this work we study the Generalized Lane-Emden equation and the interplay between the exponents involved and their consequences on the existence and non existence of radial solutions on a unit ball in n dimensions. We extend the analysis to the phase plane for a clear understanding of the behavior of solutions and the relationship between their existence and the growth of nonlinear terms, where we investigate the critical exponent p and a sub-critical exponent, which we refer to as ^p. We discover a structural change of solutions due the existence of this sub-critical exponent which we relate to the same change in behavior of the Lane- Emden equation solutions, for ; = 0; andp = 2, due to the same sub-critical exponent. We hypothesize that this sub-critical exponent may be related to a weighted trace embedding.
2

A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces

Mahavier, William Ted 08 1900 (has links)
We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential equations, second order ordinary differential equations which have variational principles, and one partial differential equation.
3

Asymptotic expansions for bounded solutions to semilinear Fuchsian equations

Xiaochun, Liu, Witt, Ingo January 2001 (has links)
It is shown that bounded solutions to semilinear elliptic Fuchsian equations obey complete asymptoic expansions in terms of powers and logarithms in the distance to the boundary. For that purpose, Schuze's notion of asymptotic type for conormal asymptotics close to a conical point is refined. This in turn allows to perform explicit calculations on asymptotic types - modulo the resolution of the spectral problem for determining the singular exponents in the asmptotic expansions.
4

Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. / Stokes and Oseen equations in an exterior domain with different boundary conditions.

Meslameni, Mohamed 01 March 2013 (has links)
On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme les domaines extérieurs, en dimension trois et l'espace tout entier. Le but est d'étudier l'existence de solutions généralisés et de solutions fortes dans un cadre général non nécessairement hilbertien. On s'intéresse aussi au cas des solutions très faibles. Dans ce travail, on considère aussi bien des conditions aux limites classiques de type Dirichlet que des conditions aux limites non standard portant sur certaines composantes du champ de vitesses, du tourbillon, voir du champ de pression. Les espaces de Sobolev classiques ne sont pas adaptés à l'étude de ces problèmes pour une telle géométrie. Pour une bonne analyse mathématique, nous avons choisi de travailler dans le cadre des espaces de Sobolev avec poids, ce qui permet en particulier de mieux contrôler le comportement à l'infini de la solution. / In this work, we study the linearized Navier-Stokes equations in an exterior domain or in the whole space at the steady state, that is, the Stokes equations and the Oseen equations. We give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated. We consider not only the Dirichlet boundary conditions but also the Non Standard boundary conditions, on some components of the velocity field, vorticity and also on the pressure. Since the domain is not bounded, the classical Sobolev spaces are not adequate. Therefore, a specific functional framework is necessary which also has to take into account the behaviour of the functions at infinity. Our approach rests on the use of weighted Sobolev spaces.
5

Interpolation of non-smooth functions on anisotropic finite element meshes

Apel, Th. 30 October 1998 (has links) (PDF)
In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang (Math. Comp. 54(1990)190, 483--493) are discussed. The modified operators are defined for non-smooth functions and are suited for the application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.
6

Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes

Apel, T., Nicaise, S. 30 October 1998 (has links) (PDF)
This paper is concerned with the anisotropic singular behaviour of the solution of elliptic boundary value problems near edges. The paper deals first with the description of the analytic properties of the solution in newly defined, anisotropically weighted Sobolev spaces. The finite element method with anisotropic, graded meshes and piecewise linear shape functions is then investigated for such problems; the schemes exhibit optimal convergence rates with decreasing mesh size. For the proof, new local interpolation error estimates in anisotropically weighted spaces are derived. Moreover, it is shown that the condition number of the stiffness matrix is not affected by the mesh grading. Finally, a numerical experiment is described, that shows a good agreement of the calculated approximation orders with the theoretically predicted ones.
7

Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes

Apel, T., Nicaise, S. 30 October 1998 (has links)
This paper is concerned with the anisotropic singular behaviour of the solution of elliptic boundary value problems near edges. The paper deals first with the description of the analytic properties of the solution in newly defined, anisotropically weighted Sobolev spaces. The finite element method with anisotropic, graded meshes and piecewise linear shape functions is then investigated for such problems; the schemes exhibit optimal convergence rates with decreasing mesh size. For the proof, new local interpolation error estimates in anisotropically weighted spaces are derived. Moreover, it is shown that the condition number of the stiffness matrix is not affected by the mesh grading. Finally, a numerical experiment is described, that shows a good agreement of the calculated approximation orders with the theoretically predicted ones.
8

Interpolation of non-smooth functions on anisotropic finite element meshes

Apel, Th. 30 October 1998 (has links)
In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang (Math. Comp. 54(1990)190, 483--493) are discussed. The modified operators are defined for non-smooth functions and are suited for the application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.
9

Sur quelques modèles hétérogènes en mécanique des fluides / On some heterogeneous models in fluid mechanics

Al Taki, Bilal 19 December 2016 (has links)
Cette thèse est consacrée à l'analyse mathématique de quelques modèles hétérogènes intervenants en mécanique des fluides. En particulier, elle est consacré a l'étude théorique des systèmes d'équations aux derivées partielles décrivants les trois modèles principaux que nous voulons présenter dans la suite. Le premier modèle étudié dans cette thèse est consacré à l'étude de l'écoulement d'un fluide visqueux newtonien et incompressible dans un bassin avec bathymétrie qui dégenère proche du bord. Le modèle mathématique étudié provient alors des équations de Navier-Stokes incompressible. On cherche à montrer que le problème de Cauchy correspondant est bien posé, au sens qu'on peut garantir l'existence globale et l'unicité de solutions faibles. Nous discuterons aussi la régularité de la solution faible. Finalement,nous établissons la convergence de la solution du modèle visqueux vers celle du modèle non visqueux quand le coefficient de viscosité tend vers zéro.La deuxième partie est dédiée à l'étude d'un modèle issu du système de Navier-Stokes dispersif ( il contient une correction dispersive) qui est lui meme obtenu à partir de la théorie cinétique des gaz. Notre modèle mathématique est dérivé a partir de ce dernier en supposant que le nombre de Mach est très faible. Le modèle obtenu est nommé effet fantôme (ou ghost effect an anglais), puisqu'il ne peut pas être obtenu à partir du modèle de Navier-Stokes compressible classique. L'objectif dans ce cadre sera d'étendre un résultat concernant l'existence locale d'une solution forte vers l'existence globale d'une solution faible. L'ingrédient principal dans notre analyse est une nouvelle inégalité fonctionnelle de type Log-Sobolev.La troisième partie de ce document est une contribution à une thématique de recherche se proposant d'analyser la compréhension des phénomènes rencontrés en géophysique qui font intervenir des milieux granulaires. Le modèle mathématique choisi est de type Bingham incompressible dont on fait dépendre le seuil de plasticité et le coe fficient de viscosité de la pression. On montre un résultat d'existence globale d'une solution faible du problème de Cauchy associé. / This thesis is devoted to the mathematical analysis of heterogeneous models raised by fluid mechanics. In particular, it is devoted to the theoretical study of partial differential equations used to describe the three main models that we present below.Initially, we are interested to study the motion of a compressible newtonienfluids in a basin with degenerate topography. The mathematical model studied derives from incompressible Navier-Stokes equations. We are interested to prove that the Cauchy problem associated is well posed. Well-posedness means that there exists a solution, that it is unique. In the meantime, we prove that the solution of the viscous model converges to the one of the inviscid limit model when the viscosity coe cient tends to zero.The second part in my thesis is devoted to study a model that arises from dispersive Navier-Stokes equations (that includes dispersive corrections to the classical compressible Navier-Stokes equations). Our model is derived from the last model assuming that the Mach number is very low. The obtained system is a Ghost eect system, which is so named because it can be derived from Kinetic theory. The main goal of this part is to extend a result concerning the local existence of strong solution to a global-in time existence of weak solutions. The main ingredient in this work is a new functional inequality of Log-Sobolev type.The last part of my thesis is a part of a research theme intends to analyze the understanding of phenomena encountered in geophysics which involves granular media. The mathematical model is of Bingham incompressible type with viscosity and placticity depending on the pressure. We provide a global existence of weak solutions of the Cauchy problem associated.
10

Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure / Regularity of the solutions of elliptic or parabolic problems with data measure

Ariche, Sadjiya 25 June 2015 (has links)
Dans cette thèse on étudie la régularité de problèmes elliptiques (Laplace, Helmholtz) ou paraboliques (équation de la chaleur) avec donnée mesure dans divers cadres géométriques. Ainsi, on considère pour les seconds membres des masses de Dirac en un point, sur une ligne infinie, semi-infinie ou finie, et également sur une courbe régulière. Les solutions de ces problèmes étant singulières sur la fracture (modélisée par la masse de Dirac dans le second membre), on étudie la régularité dans des espaces de Sobolev avec poids. Dans le cas d'une fracture droite, on utilise une technique classique qui consiste à appliquer une transformée de Fourier ou de Mellin à l'équation de Laplace. Ceci nous amène à étudier l'équation de Helmholtz en 2D. Pour ce dernier, on montre des estimations uniformes qui permettent ensuite de prendre la transformée inverse et d'obtenir le résultat de régularité attendu. De même, la transformée de Laplace transforme l'équation de la chaleur dans la même équation de Helmholtz en 2D. Dans le cas d'une fracture courbe régulière, grâce aux résultats de [D'angelo:2012], en utilisant un argument de localisation et un recouvrement dyadique, on obtient une régularité améliorée de la solution toujours dans les espaces de Sobolev avec poids. / In this thesis, we study the regularity of elliptic problems (Laplace, Helmholtz) or parabolic problems (heat equation) with measure data in different geometric frames. Thus, we consider for the second members, Dirac masses at a point, on a line, on a half-line, or on a bounded segment, and also on a regular curve.  As the solutions of these problems are singular on the fracture (modeled by Dirac mass in the second member), we study their regularity in weighted Sobolev spaces.   In the case of a straight fracture, using Fourier or Mellin technique reduces the problem in dimension three to a Helmholtz problem in dimension two. For the latter, we prove uniform estimates, which are then used to apply the inverse transform and to obtain the expected regularity result. Similarly, the Laplace transformation transforms the heat equation into the same Helmholtz equation in 2D.  In the case of a smooth curve fracture, thanks to the results of [D'angelo:2012], using a localization argument and a dyadic recovery we get an improved smoothness of the solution always in weighted Sobolev spaces.

Page generated in 0.0599 seconds