• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cement fatigue and HPHT well integrity with application to life of well prediction

Ugwu, Ignatius Obinna 15 May 2009 (has links)
In order to keep up with the world’s energy demands, oil and gas producing companies have taken the initiative to explore offshore reserves or drill deeper into previously existing wells. The consequence of this, however, has to deal with the high temperatures and pressures encountered at increasing depths. For an oil well to maintain its integrity and be produced effectively and economically, it is pertinent that a complete zonal isolation is achieved during well completion. This complete zonal isolation can be compromised due to factors that come into play when oil well cement experiences cyclic loading conditions which can lead to fatigue failure as a consequence of extensive degradation of the microstructure of the cement material depending on stress levels and number of cycles. There have been a lot of research and experimental investigations on the mechanism of fatigue failure of concrete structures but the fatigue behavior of oil well cement is still relatively unknown to engineers. Research in the area of oil well cement design has led to improved cement designs and cementing practices but yet many cement integrity problems persist and this further strengthens the need to understand the mechanism of cement fatigue. This research seeks to develop a better understanding of the performance of the casing cement bond under HPHT well conditions that can lead to best practices and a model to predict well life. An analytical model, which can be used to evaluate stresses in the cement sheath based on actual wellbore parameters, was developed and combined effectively with finite element models to evaluate the fatigue and static loading behavior of a well. Based on the findings of this investigation, the mechanical properties of the casing, cement and formation as well loading conditions play a very big role in the static and fatigue failure of well cement. Finally, recommendations for future work on this subject were also presented in order to understand all tenets of cement fatigue and to develop governing equations.
2

The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity

Yuan, Zhaoguang 14 March 2013 (has links)
In the life of a well, the cement sheath not only provides zonal isolation but also supports casing and increases casing-collapse resistance. Due to the high-pressure, high-temperature (HPHT) conditions, the cement sheath plays an important role in maintaining wellbore integrity. During the production process in HPHT wells, the pressure differential inside the casing and the surrounding formation is larger than the conventional wells. The stress induced by fluid withdrawal in highly compact reservoirs can cause the cement and the casing failure in these wells. These present a greater challenge to the wellbore integrity than the conventional wells. To have reliable data, extensive experimental work on Class G cement was carried out to measure the principal parameters for mechanical structural calculations. The experiment was also set up to simulate conditions under which cement low-cycle fatigue failure could occur. Zero-based cyclic pressure was applied to the casing in the cement low-cycle fatigue test. Three types of cement (72-lbm/ft3, 101-lbm/ft3 and 118-lbm/ft3) were cured and tested at 300ºF to study the cement mechanical properties under high-temperature conditions over the long term. The tests included a 1-year mechanical properties measurement such as compressive strength development; i.e., Young’s modulus and Poisson’s ratio. Finite element methods (FEM) were used to study the casing buckling deformation characteristics of reservoir compaction in some south Texas wells. The 2D and 3D FEM models were built to study the effects of mechanical properties and reservoir compaction on HPHT well integrity. As the confining pressure increases, the cement shows more plasticity and can withstand more pressure cycles. The cement with a higher Poisson’s ratio and lower Young’s modulus showed better low-cycle fatigue behavior. Casing collapse resistance is very sensitive to void location, cement Poisson’s ratio, cement Young’s modulus, and pore pressure. Casing eccentricity and voids shape have minor effect on the casing-collapse resistance. Casing shear failure, tension failure, and buckling failure are the most likely failure modes in reservoir compaction. For different casing wall thickness, the critical buckling strain is almost identical. This study presents a better understanding of casing failure and cement failure in HPHT wells. The results of the study will help improve cement and casing design to maintain wellbore integrity that can in turn be expected to extend throughout the life of the well.
3

Analysing Complex Oil Well Problems through Case-Based Reasoning

Abdollahi, Jafar January 2007 (has links)
<p>The history of oil well engineering applications has revealed that the frequent operational problems are still common in oil well practice. Well blowouts, stuck pipes, well leakages are examples of the repeated problems in the oil well engineering industry. The main reason why these unwanted problems are unavoidable can be the complexity and uncertainties of the oil well processes. Unforeseen problems happen again and again, because they are not fully predictable, which could be due to lack of sufficient data or improper modelling to simulate the real conditions in the process. Traditional mathematical models have not been able to totally eliminate unwanted oil well problems because of the many involved simplifications, uncertainties, and incomplete information. This research work proposes a new approach and breakthrough for overcoming these challenges. The main objective of this study is merging two scientific fields; artificial intelligence and petroleum engineering in order to implement a new methodology.</p><p>Case-Based Reasoning (CBR) and Model-Based Reasoning (MBR), two branches of the artificial intelligence science, are applied for solving complex oil well problems. There are many CBR and MBR modelling tools which are generally used for different applications for implementing and demonstrating CBR and MBR methodologies; however, in this study, the Creek system which combines CBR and MBR has been utilized as a framework. One specific challenging task related to oil well engineering has been selected to exemplify and examine the methodology. To select a correct candidate for this application was a challenging step by itself. After testing many different issues in the oil well engineering, a well integrity issue has been chosen for the context. Thus, 18 leaking wells, production and injection wells, from three different oil fields have been analysed in depth. Then, they have been encoded and stored as cases in an ontology model given the name Wellogy.</p><p>The challenges related to well integrity issues are a growing concern. Many oil wells have been reported with annulus gas leaks (called internal leaks) on the Norwegian Continental Shelf (NCS) area. Interventions to repair the leaking wells or closing and abandoning wells have led to: high operating cost, low overall oil recovery, and in some cases unsafe operation. The reasons why leakages occur can be different, and finding the causes is a very complex task. For gas lift and gas injection wells the integrity of the well is often compromised. As the pressure of the hydrocarbon reserves decreases, particularly in mature fields, the need for boosting increases. Gas is injected into the well either to lift the oil in the production well or to maintain pressure in the reservoir from the injection well. The challenge is that this gas can lead to breakdown of the well integrity and cause leakages. However, as there are many types of leakages that can occur and due to their complexity it can be hard to find the cause or causal relationships. For this purpose, a new methodology, the Creek tool, which combines CBR and MBR is applied to investigate the reasons for the leakages. Creek is basically a CBR system, but it also includes MBR methods.</p><p>In addition to the well integrity cases, two complex cases (knowledge-rich cases) within oil well engineering have also been studied and analysed through the research work which is part of the PhD. The goal here is to show how the knowledge stored in two cases can be extracted for the CBR application.</p><p>A model comprising general knowledge (well-known rules and theories) and specific knowledge (stored in cases) has been developed. The results of the Wellogy model show that the CBR methodology can automate reasoning in addition to human reasoning through solving complex and repeated oil well problems. Moreover, the methodology showed that the valuable knowledge gained through the solved cases can be sustained and whenever it is needed, it can be retrieved and reused. The model has been verified for unsolved cases by evaluating case-matching results. The model gives elaborated explanations of the unsolved cases through the building of causal relationships. The model also facilitates knowledge acquisition and learning curves through its growing case base.</p><p>The study showed that building a CBR model is a rather time-consuming process due to four reasons:</p><p>1. Finding appropriate cases for the CBR application is not straightforward</p><p>2. Challenges related to constructing cases when transforming reported information to symbolic entities</p><p>3. Lack of defined criteria for amount of information (number of findings) for cases</p><p>4. Incomplete data and information to fully describe problems of the cases at the knowledge level</p><p>In this study only 12 solved cases (knowledge-rich cases) have been built in the Wellogy model. More cases (typically hundreds for knowledge-lean cases and around 50 for knowledge-rich cases) would be required to have a robust and efficient CBR model. As the CBR methodology is a new approach for solving complex oil well problems (research and development phase), additional research work is necessary for both areas, i.e. developing CBR frameworks (user interfaces) and building CBR models (core of CBR). Feasibility studies should be performed for implemented CBR models in order to use them in real oil field operations. So far, the existing Wellogy model has showed some benefits in terms of; representing the knowledge of leaking well cases in the form of an ontology, retrieving solved cases, and reusing pervious cases.</p>
4

Analysing Complex Oil Well Problems through Case-Based Reasoning

Abdollahi, Jafar January 2007 (has links)
The history of oil well engineering applications has revealed that the frequent operational problems are still common in oil well practice. Well blowouts, stuck pipes, well leakages are examples of the repeated problems in the oil well engineering industry. The main reason why these unwanted problems are unavoidable can be the complexity and uncertainties of the oil well processes. Unforeseen problems happen again and again, because they are not fully predictable, which could be due to lack of sufficient data or improper modelling to simulate the real conditions in the process. Traditional mathematical models have not been able to totally eliminate unwanted oil well problems because of the many involved simplifications, uncertainties, and incomplete information. This research work proposes a new approach and breakthrough for overcoming these challenges. The main objective of this study is merging two scientific fields; artificial intelligence and petroleum engineering in order to implement a new methodology. Case-Based Reasoning (CBR) and Model-Based Reasoning (MBR), two branches of the artificial intelligence science, are applied for solving complex oil well problems. There are many CBR and MBR modelling tools which are generally used for different applications for implementing and demonstrating CBR and MBR methodologies; however, in this study, the Creek system which combines CBR and MBR has been utilized as a framework. One specific challenging task related to oil well engineering has been selected to exemplify and examine the methodology. To select a correct candidate for this application was a challenging step by itself. After testing many different issues in the oil well engineering, a well integrity issue has been chosen for the context. Thus, 18 leaking wells, production and injection wells, from three different oil fields have been analysed in depth. Then, they have been encoded and stored as cases in an ontology model given the name Wellogy. The challenges related to well integrity issues are a growing concern. Many oil wells have been reported with annulus gas leaks (called internal leaks) on the Norwegian Continental Shelf (NCS) area. Interventions to repair the leaking wells or closing and abandoning wells have led to: high operating cost, low overall oil recovery, and in some cases unsafe operation. The reasons why leakages occur can be different, and finding the causes is a very complex task. For gas lift and gas injection wells the integrity of the well is often compromised. As the pressure of the hydrocarbon reserves decreases, particularly in mature fields, the need for boosting increases. Gas is injected into the well either to lift the oil in the production well or to maintain pressure in the reservoir from the injection well. The challenge is that this gas can lead to breakdown of the well integrity and cause leakages. However, as there are many types of leakages that can occur and due to their complexity it can be hard to find the cause or causal relationships. For this purpose, a new methodology, the Creek tool, which combines CBR and MBR is applied to investigate the reasons for the leakages. Creek is basically a CBR system, but it also includes MBR methods. In addition to the well integrity cases, two complex cases (knowledge-rich cases) within oil well engineering have also been studied and analysed through the research work which is part of the PhD. The goal here is to show how the knowledge stored in two cases can be extracted for the CBR application. A model comprising general knowledge (well-known rules and theories) and specific knowledge (stored in cases) has been developed. The results of the Wellogy model show that the CBR methodology can automate reasoning in addition to human reasoning through solving complex and repeated oil well problems. Moreover, the methodology showed that the valuable knowledge gained through the solved cases can be sustained and whenever it is needed, it can be retrieved and reused. The model has been verified for unsolved cases by evaluating case-matching results. The model gives elaborated explanations of the unsolved cases through the building of causal relationships. The model also facilitates knowledge acquisition and learning curves through its growing case base. The study showed that building a CBR model is a rather time-consuming process due to four reasons: 1. Finding appropriate cases for the CBR application is not straightforward 2. Challenges related to constructing cases when transforming reported information to symbolic entities 3. Lack of defined criteria for amount of information (number of findings) for cases 4. Incomplete data and information to fully describe problems of the cases at the knowledge level In this study only 12 solved cases (knowledge-rich cases) have been built in the Wellogy model. More cases (typically hundreds for knowledge-lean cases and around 50 for knowledge-rich cases) would be required to have a robust and efficient CBR model. As the CBR methodology is a new approach for solving complex oil well problems (research and development phase), additional research work is necessary for both areas, i.e. developing CBR frameworks (user interfaces) and building CBR models (core of CBR). Feasibility studies should be performed for implemented CBR models in order to use them in real oil field operations. So far, the existing Wellogy model has showed some benefits in terms of; representing the knowledge of leaking well cases in the form of an ontology, retrieving solved cases, and reusing pervious cases.
5

A study on well design and integrity for deepwater exploratory drilling in Brazilian Equatorial Margin. / Um estudo sobre o projeto e integridade de poços para perfuração exploratória em águas profundas na Margem Equatorial Brasileira.

Salazar Ruiz, Manuel Sebastian 12 June 2018 (has links)
Drilling operations in deepwater (DW) or ultra-deepwater areas, even more in exploratory frontiers, have been increasingly challenging due to the operational complexities and limited available data about the subsurface conditions. In this sense, enhancing safety and minimizing the likelihood of losing well integrity and damage to the environment is a currently essential objective relating to offshore drilling activities. Hence, deepwater well designs should advance to safely meet the challenges related to the progression of well and water depths. The safe construction of these wells requires the application of suitable well design considerations that include well integrity approaches to reduce the risk of an unintended release of formation fluids (oil, gas or water) to the environment during the deepwater drilling operations, in other words a \"Blowout\" occurrence. In this study it is proposed two deepwater well architectural designs, limited to drilling stage, that safely accomplish the well targets and facing several deepwater well complexities, e.g. narrow operating envelopes. Thus, well logging and geological data of two actual pioneer wells drilled in deep and ultradeep water zones in Ceará Basin are used as a basis to construct and assess the drilling operating envelopes, to define the casing shoe depths and well barrier envelope. Furthermore, it is introduced the application of at least two independent Barrier Integrated Sets (BISs) to ensure the well integrity during the 4th phase drilling of the proposed well architectures, as it has recently been required in Brazil by the National Petroleum Agency (ANP) through \"Well Integrity Management System\" (SGIP for its acronym in Portuguese). / As operações de perfuração em áreas de águas profundas ou ultra profundas, ainda mais nas fronteiras exploratórias, têm sido cada vez mais desafiadoras devido às complexidades operacionais e aos limitados dados disponíveis sobre as condições do subsolo. Nesse sentido, aumentar a segurança e minimizar a probabilidade de perder a integridade do poço e os danos ao meio ambiente são objetivos essenciais atualmente relacionados às atividades de perfuração offshore. Portanto, os projetos de poços em águas profundas devem avançar para enfrentar com segurança os desafios associados à progressão do poço e das profundidades da água. A construção segura desses poços requer a aplicação de considerações de projeto adequadas que incluam abordagens da integridade do poço para reduzir o risco de liberação não intencional de fluidos de formação (óleo, gás ou água) para o ambiente durante as operações de perfuração em águas profundas, em outras palavras a ocorrência de \"Blowout\". Neste estudo, são propostos dois projetos arquiteturais de poços em águas profundas, limitados à etapa de perfuração, que cumprem com segurança os objetivos do poço e enfrentam várias complexidades de poços em águas profundas, por exemplo janelas operacionais estreitas. Assim, dados geológicos e de perfilagem de dois poços pioneiros perfurados nas zonas de águas profundas e ultra profundas da Bacia do Ceará são usados como base para a construção e avaliação da janela operacional, para definir as profundidades da sapata do revestimento e do conjunto das barreiras do poço. Além disso, é introduzida a aplicação de pelo menos dois Conjuntos Solidários de Barreiras (CSBs) independentes para garantir a integridade do poço durante a perfuração da 4ª fase das arquiteturas dos poços propostos, como tem sido recentemente exigido no Brasil pela Agência Nacional do Petróleo (ANP), através do \"Sistema de Gerenciamento de integridade de Poços\" (SGIP).
6

A study on well design and integrity for deepwater exploratory drilling in Brazilian Equatorial Margin. / Um estudo sobre o projeto e integridade de poços para perfuração exploratória em águas profundas na Margem Equatorial Brasileira.

Manuel Sebastian Salazar Ruiz 12 June 2018 (has links)
Drilling operations in deepwater (DW) or ultra-deepwater areas, even more in exploratory frontiers, have been increasingly challenging due to the operational complexities and limited available data about the subsurface conditions. In this sense, enhancing safety and minimizing the likelihood of losing well integrity and damage to the environment is a currently essential objective relating to offshore drilling activities. Hence, deepwater well designs should advance to safely meet the challenges related to the progression of well and water depths. The safe construction of these wells requires the application of suitable well design considerations that include well integrity approaches to reduce the risk of an unintended release of formation fluids (oil, gas or water) to the environment during the deepwater drilling operations, in other words a \"Blowout\" occurrence. In this study it is proposed two deepwater well architectural designs, limited to drilling stage, that safely accomplish the well targets and facing several deepwater well complexities, e.g. narrow operating envelopes. Thus, well logging and geological data of two actual pioneer wells drilled in deep and ultradeep water zones in Ceará Basin are used as a basis to construct and assess the drilling operating envelopes, to define the casing shoe depths and well barrier envelope. Furthermore, it is introduced the application of at least two independent Barrier Integrated Sets (BISs) to ensure the well integrity during the 4th phase drilling of the proposed well architectures, as it has recently been required in Brazil by the National Petroleum Agency (ANP) through \"Well Integrity Management System\" (SGIP for its acronym in Portuguese). / As operações de perfuração em áreas de águas profundas ou ultra profundas, ainda mais nas fronteiras exploratórias, têm sido cada vez mais desafiadoras devido às complexidades operacionais e aos limitados dados disponíveis sobre as condições do subsolo. Nesse sentido, aumentar a segurança e minimizar a probabilidade de perder a integridade do poço e os danos ao meio ambiente são objetivos essenciais atualmente relacionados às atividades de perfuração offshore. Portanto, os projetos de poços em águas profundas devem avançar para enfrentar com segurança os desafios associados à progressão do poço e das profundidades da água. A construção segura desses poços requer a aplicação de considerações de projeto adequadas que incluam abordagens da integridade do poço para reduzir o risco de liberação não intencional de fluidos de formação (óleo, gás ou água) para o ambiente durante as operações de perfuração em águas profundas, em outras palavras a ocorrência de \"Blowout\". Neste estudo, são propostos dois projetos arquiteturais de poços em águas profundas, limitados à etapa de perfuração, que cumprem com segurança os objetivos do poço e enfrentam várias complexidades de poços em águas profundas, por exemplo janelas operacionais estreitas. Assim, dados geológicos e de perfilagem de dois poços pioneiros perfurados nas zonas de águas profundas e ultra profundas da Bacia do Ceará são usados como base para a construção e avaliação da janela operacional, para definir as profundidades da sapata do revestimento e do conjunto das barreiras do poço. Além disso, é introduzida a aplicação de pelo menos dois Conjuntos Solidários de Barreiras (CSBs) independentes para garantir a integridade do poço durante a perfuração da 4ª fase das arquiteturas dos poços propostos, como tem sido recentemente exigido no Brasil pela Agência Nacional do Petróleo (ANP), através do \"Sistema de Gerenciamento de integridade de Poços\" (SGIP).
7

Wellbore completion monitoring using fiber optic distributed strain sensing

Lipus, Martin Peter 12 March 2020 (has links)
Bohrlochintegrität ist unerlässlich für die erfolgreiche und nachhaltige Produktion und Injektion von Fluiden aus Reservoirgesteinen, wie beispielsweise bei der Nutzung von Kohlenwasserstoffen, Geothermie oder Standorten für geologische Speicherung. Um die Integrität einer Bohrung über seine Lebenszeit zu gewährleisten, ist vor allem eine erfolgreiche primäre Komplettierung nötig. Besonders die Zementation der Rohre stellt dabei ein großes Risiko dar, weil durch die natürlichen Gegebenheiten im Bohrloch viele Faktoren Einfluss auf die Zusammensetzung und Verteilung der Zementsuspension haben. Diese Studie untersucht das Monitoring-potenzial von faseroptischer ortsverteilter Dehnungsmessung DSS (distributed strain sensing). Ergänzend zu faseroptischer ortsverteilten Temperaturmessung DTS (distributed temperature sensing), welche seit mehr als zwei Jahrzehnten in der Industrie Anwendung findet, kann jeder Ort einer Glasfaser zusätzlich Informationen über den mechanischen Spannungszustand geben. Experimentelle und analytische Arbeiten wurden durchgeführt, um die Auswirkung von Laständerungen auf einer Faser zu quantifizieren. Desweiteren wurde der Einfluss komplexer mehrschichtiger Bohrlochkabel auf Dehnungsmessergebnisse untersucht. Ein faseroptisches Messkabel wurde im Zuge dieser Arbeit im Ringraum entlang der Produktionsrohrtour einer Bohrung installiert. Die gemessenen Geländedaten zeigen Ergebnisse aus zwei Arbeitsschritten der Fertigstellung der Bohrung - der Filterverkiesung und der Zementation. Aufgrund der Dichtedifferenz von Kies und Bohrspülung wurde am Kabel ein Dehnungseffekt gemessen. Die Teufe, in welcher der Dehnungseffekt auftritt, korreliert mit Wireline Gamma-Gamma-Dichtedaten, welche im gleichen Zeitfenster gemessen wurden. Die anschliessende Kompaktion des Kieskopfes wurde durch das Glasfaserkabel in Form einer zunehmenden mechanischen Belastung erfasst. Während der anschliessenden Zementation der Rohrtour wurde ein Dehnungseffekt in der Mischzone von Flüssigkeiten mit unterschiedlichen rheologischen Eigenschaften gemessen. Anhand eines Experiments konnte bestätigt werden, dass fluidrheologische Parameter (wie die Fluidviskosität) mit einem faseroptischen Messkabel quantifiziert werden können. Hierfür werden Fluidscherspannungen gemessen, welche durch das Fliessen von Fluiden an der Kabeloberfläche hervorgerufen werden (amtliches Zeichen zur Patentanmeldung: EP 19171265.2). DSS-Messungen erweiten das Verständnis von Fluidverdrängungsvorgängen in Bohrlöchern und ermöglichen eine Beurteilung von Komplettierungsvorgängen in Echtzeit. / Borehole integrity is fundamental for the successful and sustainable utilization of hydrocarbons, geothermal energy and sites for geological storage. The success of the primary well completion is necessary to ensure the integrity of a well over its lifetime. In particular, the casing cementation represents a great risk because many factors have an influence on the composition and distribution of the cement suspension due to the natural conditions in the borehole. This study investigates the monitoring potential of fiber-optic distributed strain sensing (DSS) using a measurement cable which is installed in the annulus of a well. Similar to distributed temperature sensing (DTS), which is used for temperature monitoring in industry applications for more than two decades, fibers additionally convey information about their mechanical stress state. Laboratory as well as analytical work was performed to quantify the effect of load changes on a fiber. In addition, the influence of complex multilayered downhole cable on the strain response is examined. The presented field data shows results from two stages of the well completion - the gravel packing and the cementation. Due to the difference in density of gravel and drilling fluid, a deformation is measured on the cable. The depth at which the stretching effect occurs correlates with wire-line gamma-gamma density data measured in the same time window. The subsequent compaction of the gravel head, which was not revealed by the logging measurement, was detected by the fiber optic cable in the form of an increasing mechanical load on the cable. During cement pumping, fluid shear stresses create a measurable load on the cable, especially in the mixing zone of liquids with dfferent rheological properties. Based on this observation, an experiment was designed and conducted which aims at measuring fluid rheological parameters such as fluid viscosity. For this purpose, the fluid shear stresses acting on the fiber optic sensing cable in the flow path are measured (patent application number: EP 19171265.2). DSS measurements extend the understanding of fluid displacements in wellbores and allow an assessment of well completion process in real time.
8

Untersuchungen zur Bohrungsintegrität sowie dem Gasverhalten von Wasserstoff in Salzkavernen unter Berücksichtigung variabler Randbedingungen

Kirch, Martin 19 May 2023 (has links)
Salzkavernen gelten als vielversprechende Möglichkeit Wasserstoff unter Tage zu speichern. Da aktuell keine Salzkaverne zur kommerziellen Wasserstoffspeicherung in Deutschland existiert, wurden Forschungsvorhaben initiiert, um offene Fragen in diesem Bereich zu klären. Die vorliegende Arbeit beschäftigt sich mit der Bestimmung der Dichtheit eines ausgewählten technischen Bohrungsbarriereelements: der letzten zementierten Rohrtour. Laborative Permeabilitätsmessungen stellen eine Möglichkeit dar, den Nachweis der Dichtheit zu erbringen. Zur Messung der Permeabilität werden zwei Versuchsanlagen gebaut, die auf einem instationären Messprinzip basieren. Mit Hilfe dieser Anlagen wird die Durchlässigkeit von Einzelmaterialproben und Verbundproben bestehend aus Steinsalz, Anhydrit, Zementstein und Futterrohr bestimmt und bewertet. Zur Auswertung der Versuche wird eine Software programmiert, die die eindimensionale Strömungsgleichung mit Hilfe der Finiten-Volumen-Methode numerisch löst. Die Arbeit beschreibt die weltweiten Erfahrungen im Bereich untertägiger Wasserstoffspeicherung. Weiterhin wird der Stand der Technik von Permeabilitätsmessungen dargestellt und die Eigenschaften des verwendeten Messverfahrens beschrieben. Mit Hilfe der Auswertung von Dichtheitstest kann gezeigt werden, dass die Anlagen zum Nachweis niedrigster Permeabilitäten geeignet sind. Das grundliegende mathematische Modell und dessen numerische Approximation wird hergeleitet. Die numerischen Fehler und der Modellfehler werden mit Hilfe einer Genauigkeitsanalyse bestimmt. Über die Analyse der Messunsicherheiten der Eingangsparameter erfolgt eine Abschätzung der Messunsicherheit der berechneten Permeabilität. Die Ergebnisse der Permeabilitätsmessungen zeigen, dass der untersuchte Zementstein dichte Verbunde mit Steinsalz und Futterrohr gegenüber Wasserstoff ausbilden kann. Als wichtigste Einflussgröße auf die Permeabilität wird der Effektivdruck identifiziert. Ein Einfluss der Messgase (Wasserstoff und Methan) auf das Strömungsverhalten kann, mit Ausnahme des Klinkenberg-Effekts, nicht nachgewiesen werden. Erfahrungen aus dem Bereich der Erdgasspeicherung sind prinzipiell auf die Wasserstoffspeicherung übertragbar. Die Ergebnisse der Untersuchungen sind in die Erstellung eines Leitfadens zur Errichtung von Wasserstoffkavernen für Genehmigungsbehörden und zukünftige Investoren eingeflossen.

Page generated in 0.0706 seconds