• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évaluation des caractéristiques des hydrogels d’alginate supplémentés en acide hyaluronique ou en hydroxyapatite lors de la différenciation des cellules souches mésenchymateuses issues de la gelée de Wharton / Evaluation of characteristics of alginate/hyaluronic acid and alginate/hydroxyapatite hydrogels during differentiation of Wharton's Jelly mesenchymal stem cells

Yu, Hao 18 July 2017 (has links)
Dans le domaine de l'ingénierie du cartilage, les hydrogels à base d'alginate (Alg) et de cellules souches mésenchymateuses (CSM) sont utilisés comme biomatériaux pouvant être utilisés pour combler des lésions cartilagineuses plus ou moins profondes. Cependant, pour reproduire l’organisation zonale du cartilage, des biomatériaux multiphasiques sont nécessaires. Afin de guider la différenciation des CSM dans les différentes strates du biomatériau, sans apports de facteurs de croissance, des composants naturels du cartilage (acide hyaluronique, HA) ou de la matrice osseuse (hydroxyapatite, Hap) peuvent être ajoutés à l’alginate. L’objectif de ce travail de thèse consiste à analyser l’impact de la composition de biomatériaux à base d’alginate enrichi soit en HA soit en Hap sur le comportement des CSM. La première partie de notre travail à consister à évaluer le comportement des CSM issues de la gelée de Wharton dans ces hydrogels. Nos résultats mettent en évidence que les hydrogels d’Alg/Hap possèdent non seulement de meilleures propriétés mécaniques que les hydrogels Alg/HA et favorisent la viabilité des CSM ainsi que leur différenciation par rapport aux CSM ensemencées dans un hydrogel d’Alg/HA. La méthode de stérilisation du biomatériau représente une étape incontournable, dont on doit impérativement évaluer les multiples effets, en particulier pour ce qui touche au comportement des cellules, mais aussi au maintien de l’intégrité des propriétés physicochimiques de l'hydrogel. Ainsi, dans une seconde partie du travail, nous avons montré que le traitement de stérilisation par autoclave induisait un effet négatif sur les caractéristiques initiales de l'hydrogel à base d'alginate. Il ressort également de cette investigation sur les modes de stérilisation, que la stérilisation des hydrogels avec des UV est plus efficace et permet de préserver au mieux les propriétés spécifiques de l'hydrogel, notamment de l’Alg/HA. Enfin, dans une troisième partie de notre travail, nous avons évalué l’évolution des propriétés mécaniques au cours de la différenciation et l’impact de celles-ci sur la différenciation des CSM ainsi que sur leurs propriétés immunomodulatrices. À partir de ces résultats, nous avons montré que les caractéristiques physico-chimiques des hydrogels d’Alg/ha et Alg/hap influençaient non seulement le potentiel de différenciation des CSM-GW mais également la sécrétion des facteurs solubles impliqués dans l’immunomodulation. Ces propriétés physico-chimiques étant influencées dès le procédé de stérilisation, il est alors conseillé de les prendre en compte dans toutes les étapes de l’ingénierie tissulaire / In the field of cartilage engineering, alginate (Alg)-based hydrogels and mesenchymal stem cells (MSC) are widely used as raw biomaterials and stem cells which can be used to fill cartilage lesions of varying depth. However, to reproduce the zonal organization of articular cartilage, a graft multilayer is necessary. In order to guide the differentiation of MSCs in different strata of the biomaterials, without input of growth factors, natural cartilage components (hyaluronic acid, HA) or bone matrix (hydroxyapatite, Hap) can be added into the alginate. The aim of this work is to analyze the impact of the composition of alginate enriched either in HA or in Hap on the behavior of MSCs. The first part of our work is to evaluate the behavior of WJ-MSCs into these hydrogels. Our results have shown that Alg/ Hap hydrogels not only possess better mechanical properties than Alg/HA hydrogels, but also promote the viability of MSCs and their differentiation from MSC seeded into the Alg/HA hydrogel. The sterilization method of biomaterial is an essential step, the multiple effects of which must be evaluated, in particular as regards the behavior of the cells, but also to maintain the integrity of the physicochemical properties of hydrogel. Thus, in a second part of this work, we showed that the autoclave sterilization treatment induced a negative effect on the initial characteristics of alginate hydrogel. It is also apparent from this investigation of the sterilization modes that the sterilization of hydrogels with UV is more efficient and makes it possible to preserve the specific properties of the hydrogel as best as possible, in particular Alg/HA. Finally, in a third part of our work, we also evaluated the evolution of the mechanical properties during the differentiation and the impact of these on the differentiation of MSCs and their immunomodulatory properties. From these results, we have shown that the physico-chemical characteristics of Alg / ha and Alg/hap hydrogels influence not only the differentiation potential of WJ-MSC but also the secretion of soluble factors involved in immunomodulation. Since these physicochemical properties are influenced by the sterilization process, it is advisable to take them into account in all stages of tissue engineering
2

A contribution to the selection of suitable cells, scaffold and biomechanical environment for ligament tissue engineering / Une contribution à la sélection de cellules adaptés, biomatériaux et d’environments biomécaniques appropriés pour l’ingéniere tissulaire ligamentaire

Liu, Xing 01 July 2019 (has links)
L'ingénierie tissulaire du ligament constitue une approche prometteuse pour réparer ou remplacer un ligament endommagé. Les trois piliers essentiels de l'ingénierie tissulaire ligamentaire sont la matrice de support (aussi appelée scaffold), la source cellulaire, ainsi que l'apport de stimulations biomécaniques/biochimiques : ces trois piliers ont été partiellement étudiés par le passé dans le but de s’orienter vers une régénération ligamentaire. Dans la présente étude, le polymère synthétique poly (L-lactide-co-ε-caprolactone) (PLCL) et la soie ont été proposés et comparés comme de potentiels candidats pour la constitution d’une matrice de support. Une série de matrices tressées multicouches à base de PLCL et de soie, ainsi qu'un nouveau composite soie/PLCL ont été développés et comparés. Les caractérisations physico-chimiques et biologiques ont démontré que le PLCL et la soie constituent des candidats pertinents, tant sur les plans mécaniques que biologiques, pour la constitution d’une matrice de support. De plus, nous avons montré que le composite soie/PLCL offrait des propriétés mécaniques et une biocompatibilité accrue par rapport aux autres matrice testées, et constituait probablement le candidat le plus approprié pour l'ingénierie tissulaire du ligament. Les cellules souches mésenchymateuses (CSM) de la gelée de Wharton (WJ-MSCs) ainsi que les cellules souches mésenchymateuses de la moelle osseuse (BM-MSCs) ont été évaluées et comparées en tant que sources cellulaires potentielles pour la régénération ligamentaire. Les caractéristiques biologiques de ces cellules incluent l’adhésion cellulaire, la prolifération, la migration et la synthèse de matrice extracellulaire. Ces deux types de cellules ont montré une bonne biocompatibilité dans leurs interactions avec les matrices de support en PLCL et en soie. Aucune différence significative n'a été observée entre les WJ-MSCs et les BM-MSCs. Enfin, l'effet de la stimulation biomécanique sur la différentiation des CSM en tissu ligamentaire a été évalué par le biais d’un bioréacteur de traction-torsion. Bien que peu de cellules aient été détectées la matrice après 7 jours de stimulation, des CSM de forme allongée le long des fibres ont été détectées, ce qui permet de penser qu'il est possible de promouvoir la différenciation des biosubstituts matrice-cellules grâce à la stimulation mécanique en bioréacteur. En conclusion, cette étude démontre le potentiel prometteur de l’association de cellules souches mésenchymateuses issues de la gelée de Wharton ou de la moelle osseuse avec une matrice de support composite soie/PLCL pour la régénération ligamentaire dans le futur. / Ligament tissue engineering offers a potential approach to recover or replace injured ligament. The three essential elements that have been investigated towards ligament regeneration consist in a suitable scaffold, an adapted cell source, and the supply of biomechanical/biochemical stimulations. In the current study, synthetic polymer poly (L-lactide-co-ε-caprolactone) (PLCL) and silk have been evaluated as suitable candidates to constitute an adapted scaffold. A series of multilayer braided scaffolds based on PLCL and silk, as well as an original silk/PLCL composite scaffold, have been developed and compared. The conducted physicochemical and biological characterizations have demonstrated that both PLCL and silk constitute adapted candidate material to form ligament scaffolds from the mechanical and biological points of view. Moreover, it has been observed that silk/PLCL composite scaffold resulted in adequate mechanical properties and biocompatibility, and therefore could constitute suitable candidate scaffolds for ligament tissue engineering. Both Wharton’s Jelly mesenchymal stem cells (WJ-MSCs) and Bone marrow mesenchymal stem cells (BM-MSCs) have been evaluated to be cell source for ligament regeneration. MSCs behaviors including cell attachment, proliferation, migration and extracellular matrix synthesis have been investigated. In the present study, both MSCS showed a good biocompatibility to interact with PLCL and silk scaffolds. No significant differences have been detected between WJ-MSCs and BM-MSCs. Finally, the effect of biomechanical stimulation on MSCs differentiation towards ligament tissue has been carried out with a tension-torsion bioreactor. Although few cells were detected on scaffold after 7 days of stimulation, MSCs were observed to exhibit an elongated shape along the longitudinal direction of fibers, which may indicate that an adapted mechanical stimulation could promote MSC-scaffold constructs differentiation towards ligamentous tissue. As a conclusion, this study demonstrates the potential of WJ-MSCs and BM-MSCs combined with a new silk/PLCL composite scaffold towards ligament regeneration.

Page generated in 0.1118 seconds