• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A digital relaying algorithm for integrated power system protection and control

Demeter, Elemer 25 July 2005
Recent developments in data packets based high speed digital communications have opened the door for new types of applications in power system protection and control. Intelligent Electronic Devices (IEDs) are equipped with various communication capabilities that make their functional integration a natural next step. Existing integration of substation equipment is not capable of clustering with the purpose of pooling hardware resources. <p> Presently, every electric device requiring protection has its dedicated hardware performing the predetermined set of protective functions. A new function-based protection and control philosophy is proposed, based on an open-system solution. In the proposed system, the resources of the protective and control hardware are pooled, and as a clustered system provide each protected unit (line, transformer, breaker, etc) with functions required for complete direct and backup protection. <p> The work presented in this thesis identifies the performance requirements of a digital relaying algorithm for processing samples that are sent across Ethernet-based communication channels. The work shows the shortcomings and unstable performance of widely used protective algorithms in accommodating data samples that are out of step from their proper position due to variable time delays of the communications media. A new digital relaying algorithm was developed that is able to extract the amplitude and phase angle of signals from data samples received across Ethernet networks with variable jitter. <p> The performance of the algorithm was tested by using the recovered phasor amplitude and phase angle information in protective solutions. The results show that there is significant flexibility in the algorithm that can be used to facilitate less performant communication channels, or, to take advantage of faster communications channels by reducing the response time of the protective function. <p> The results show that the algorithm works well with variable length data windows, and variable sampling frequencies. Higher sampling rates make communications problems more visible, but the presented algorithm is able to compensate for wide variations in network performance, effectively maintaining sampled signal phase and amplitude information during network performance fluctuations.
2

A digital relaying algorithm for integrated power system protection and control

Demeter, Elemer 25 July 2005 (has links)
Recent developments in data packets based high speed digital communications have opened the door for new types of applications in power system protection and control. Intelligent Electronic Devices (IEDs) are equipped with various communication capabilities that make their functional integration a natural next step. Existing integration of substation equipment is not capable of clustering with the purpose of pooling hardware resources. <p> Presently, every electric device requiring protection has its dedicated hardware performing the predetermined set of protective functions. A new function-based protection and control philosophy is proposed, based on an open-system solution. In the proposed system, the resources of the protective and control hardware are pooled, and as a clustered system provide each protected unit (line, transformer, breaker, etc) with functions required for complete direct and backup protection. <p> The work presented in this thesis identifies the performance requirements of a digital relaying algorithm for processing samples that are sent across Ethernet-based communication channels. The work shows the shortcomings and unstable performance of widely used protective algorithms in accommodating data samples that are out of step from their proper position due to variable time delays of the communications media. A new digital relaying algorithm was developed that is able to extract the amplitude and phase angle of signals from data samples received across Ethernet networks with variable jitter. <p> The performance of the algorithm was tested by using the recovered phasor amplitude and phase angle information in protective solutions. The results show that there is significant flexibility in the algorithm that can be used to facilitate less performant communication channels, or, to take advantage of faster communications channels by reducing the response time of the protective function. <p> The results show that the algorithm works well with variable length data windows, and variable sampling frequencies. Higher sampling rates make communications problems more visible, but the presented algorithm is able to compensate for wide variations in network performance, effectively maintaining sampled signal phase and amplitude information during network performance fluctuations.
3

Sistema de medição fasorial sincronizada aplicado à proteção de retaguarda de grandes áreas / Synchronized phasor measurement system applied to wide area protection of transmission systems

Aline Flávia Nonato da Costa 29 October 2015 (has links)
Este trabalho tem o objetivo de apresentar o desenvolvimento de uma metodologia para a proteção de retaguarda de linhas de transmissão de grandes áreas, utilizando dados de um Sistema de Medição Fasorial Sincronizada. O estudo se justifica devido à contínua expansão dos Sistemas de Transmissão, tais como os que fazem parte do Sistema Interligado Nacional. Vale esclarecer que esta expansão pode vir a dificultar a operação e controle do mesmo, o que faz com que seja necessário, um sistema de proteção cada vez mais confiável, que diminua o impacto de eventos danosos de grande porte, e que atenda aos requisitos de um sistema de proteção de grandes áreas. Neste contexto, o modelo do sistema elétrico de potência em análise foi implementado computacionalmente a partir do RSCAD, ambiente computacional e interface gráfica do RTDS® (Real Time Digital Simulator). Como principal passo, o algoritmo desenvolvido verifica a variação da potência ativa em todos os barramentos monitorados do sistema de transmissão e, de acordo com tal variação, associada ao estado dos dois extremos da linha, detecta e aponta a localização de uma situação de falta. Pelos resultados obtidos, a metodologia se mostrou eficiente na detecção e localização da falta em linhas de transmissão para sistemas de grandes áreas. Toda a metodologia desenvolvida, considerações adotadas e os promissores resultados observados serão reportados neste documento. / This work aims to present the development of a methodology for wide area transmission line backup protection, using Synchronized Phasor Measurement Systems. This study is justified due to continuous expansion of Transmission Systems, such as those which are part of the National Interconnected System. It is worth clarifying that this expansion might difficult system operation and control, which makes necessary to have an increasingly reliable protection system, that minimizes the impact of large dangerous events, and, at the same time, supplies the requirements of a wide area protection system. Within this context, the electrical system model under analysis was implemented through RSCAD, which is a RTDS® (Real Time Digital Simulator) computing environment and graphical interface. As main step, the developed algorithm verifies the active power variation in all monitored buses of the transmission system and then, according to such variation, associated with the communication of the variation state of both line sides, detects and indicates the localization of a faulting condition. According to the results obtained, the methodology has shown its efficiency in transmission line faults detection and localization for wide areas of electrical power systems. The entire developed methodology, considerations adopted and promising outcomes will be reported along this document.
4

Sistema de medição fasorial sincronizada aplicado à proteção de retaguarda de grandes áreas / Synchronized phasor measurement system applied to wide area protection of transmission systems

Costa, Aline Flávia Nonato da 29 October 2015 (has links)
Este trabalho tem o objetivo de apresentar o desenvolvimento de uma metodologia para a proteção de retaguarda de linhas de transmissão de grandes áreas, utilizando dados de um Sistema de Medição Fasorial Sincronizada. O estudo se justifica devido à contínua expansão dos Sistemas de Transmissão, tais como os que fazem parte do Sistema Interligado Nacional. Vale esclarecer que esta expansão pode vir a dificultar a operação e controle do mesmo, o que faz com que seja necessário, um sistema de proteção cada vez mais confiável, que diminua o impacto de eventos danosos de grande porte, e que atenda aos requisitos de um sistema de proteção de grandes áreas. Neste contexto, o modelo do sistema elétrico de potência em análise foi implementado computacionalmente a partir do RSCAD, ambiente computacional e interface gráfica do RTDS® (Real Time Digital Simulator). Como principal passo, o algoritmo desenvolvido verifica a variação da potência ativa em todos os barramentos monitorados do sistema de transmissão e, de acordo com tal variação, associada ao estado dos dois extremos da linha, detecta e aponta a localização de uma situação de falta. Pelos resultados obtidos, a metodologia se mostrou eficiente na detecção e localização da falta em linhas de transmissão para sistemas de grandes áreas. Toda a metodologia desenvolvida, considerações adotadas e os promissores resultados observados serão reportados neste documento. / This work aims to present the development of a methodology for wide area transmission line backup protection, using Synchronized Phasor Measurement Systems. This study is justified due to continuous expansion of Transmission Systems, such as those which are part of the National Interconnected System. It is worth clarifying that this expansion might difficult system operation and control, which makes necessary to have an increasingly reliable protection system, that minimizes the impact of large dangerous events, and, at the same time, supplies the requirements of a wide area protection system. Within this context, the electrical system model under analysis was implemented through RSCAD, which is a RTDS® (Real Time Digital Simulator) computing environment and graphical interface. As main step, the developed algorithm verifies the active power variation in all monitored buses of the transmission system and then, according to such variation, associated with the communication of the variation state of both line sides, detects and indicates the localization of a faulting condition. According to the results obtained, the methodology has shown its efficiency in transmission line faults detection and localization for wide areas of electrical power systems. The entire developed methodology, considerations adopted and promising outcomes will be reported along this document.
5

Development and Verification of Control and Protection Strategies in Hybrid AC/DC Power Systems for Smart Grid Applications

Salehi Pour Mehr, Vahid 02 November 2012 (has links)
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
6

Impact of ICT reliability and situation awareness on power system blackouts

Panteli, Mathaios January 2013 (has links)
Recent major electrical disturbances highlight the extent to which modern societies depend on a reliable power infrastructure and the impact of these undesirable events on the economy and society. Numerous blackout models have been developed in the last decades that capture effectively the cascade mechanism leading to a partial or complete blackout. These models usually consider only the state of the electrical part of the system and investigate how failures or limitations in this system affect the probability and severity of a blackout.However, an analysis of the major disturbances that occurred during the last decade, such as the North America blackout of 2003 and the UCTE system disturbance of 2006, shows that failures or inadequacies in the Information and Communication Technology (ICT) infrastructure and also human errors had a significant impact on most of these blackouts.The aim of this thesis is to evaluate the contribution of these non-electrical events to the risk of power system blackouts. As the nature of these events is probabilistic and not deterministic, different probabilistic techniques have been developed to evaluate their impact on power systems reliability and operation.In particular, a method based on Monte Carlo simulation is proposed to assess the impact of an ICT failure on the operators’ situation awareness and consequently on their performance during an emergency. This thesis also describes a generic framework using Markov modeling for quantifying the impact of insufficient situation awareness on the probability of cascading electrical outages leading to a blackout. A procedure based on Markov modeling and fault tree analysis is also proposed for assessing the impact of ICT failures and human errors on the reliable operation of fast automatic protection actions, which are used to provide protection against fast-spreading electrical incidents. The impact of undesirable interactions and the uncoordinated operation of these protection schemes on power system reliability is also assessed in this thesis.The simulation results of these probabilistic methods show that a deterioration in the state of the ICT infrastructure and human errors affect significantly the probability and severity of power system blackouts. The conclusion of the work undertaken in this research is that failures in all the components of the power system, and not just the “heavy electrical” ones, must be considered when assessing the reliability of the electrical supply.

Page generated in 0.1006 seconds