• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the Wilms tumour suppressor gene (WTI) during human decidualization

Lucas, Christopher H. January 2010 (has links)
No description available.
2

Molecular analysis of a putative antisense regulatory region in WT1 intron 1

Salpekar, Ashreena January 2000 (has links)
No description available.
3

Molecular investigations of structural and numerical chromosome abnormalities in man

Crolla, John Anthony Cesidio January 1997 (has links)
No description available.
4

Novel targets of the Wilms' tumour 1 gene (Wt1) in the epicardium during development

Velecela Chuquilla, Victor Leonardo January 2012 (has links)
Cardiovascular and heart diseases are the leading causes of death worldwide. In mammals, when heart damage occurs this organ is unable to regenerate itself. Understanding how to induce a regenerative process has been the focus of a great deal of attention recently. The understanding of heart development and the initial formation of several heart lineages could be used in finding a regenerative approach to heart damage that can mimic developmental processes. The Wilms’ tumour 1 gene (Wt1) is essential in the epicardium, the outer layer of cells around the heart, which during development has a multipotent potential and is the source of progenitors for several heart cell lineages such as: cells of the coronary vasculature, fibroblasts and cardiomyocytes. In my thesis I have focused on using an in-vitro (immortalized epicardial cells where Wt1 can be deleted by adding tamoxifen), and an in-vivo approach (genome wide expression analyses of Wt1 control and Wt1 knock-out epicardial enriched cells), to identify novel targets of Wt1 in the epicardium during development. I found that the chemokines Cxcl10 and Ccl5 are up-regulated in tamoxifen induced immortalized Wt1 knock-out epicardial cells and ex-vivo in heart explants when Wt1 is down-regulated. Ccl5 was found to be able to inhibit cardiomyocyte proliferation and Cxcl10 also inhibited epicardial cell migration, which could further explain ventricular thinning in Wt1 mutant mouse hearts. Wt1 is able to bind directly to the promoter of a chemokine and interferon response regulator gene, Irf7, which is also up-regulated in our in-vivo model. This could provide a mechanism by which Wt1 can inhibit chemokine expression during development, and could link Wt1 with immunological responses, which recently have been shown to play a role in the physiology and development of cells outside immunity, as well as being involved in physiological roles during damage and repair in adult tissues. I have also identified two Wt1-GFP populations (Wt1GFP++ and Wt1GFP+) in the ventricles of Wt1-GFP knock-in mice. The Wt1GFP++ population is enriched for epicardial cells, and a genome wide transcriptome analysis of these cells from E11.5 to E16.5 demonstrates they have a very dynamic regulation of a wide variety of genes, and also it indicates the existence of an early, transient and late Wt1GFP++ gene expression programs. The transcriptome analysis of Wt1GFP++ control and Wt1GFP++ Wt1 knock-out cells, from Gata5-Cre Wt1loxP/gfp mice at E13.5, reveals that Wt1 could regulate a number of previously un-described Wt1 targets related to the early Wt1GFP++ program, and gene ontology analyses indicate that many targets are related to cell to cell signalling and interaction, cell to extracellular matrix interaction, tissue development and morphogenesis. The Wt1GFP+ cell population is positive for a number of cardiomyocyte specific markers and has a low or negative expression of endothelial, epithelial and mesenchymal markers according to my transcriptome analysis. The findings I have described here shed light on the variety of targets of Wt1 and further reveal the function of Wt1 during epicardial development, which could be used in finding a regenerative approach to heart disease.
5

Localisation and characterisation of the familial tumour gene, FWT1

Rahman, Nazneen January 1999 (has links)
No description available.
6

Role of WT1 in Ischaemic Angiogenesis

Ogley, Robert James January 2018 (has links)
Ischaemia causes irreversible tissue damage in cardiovascular disease. Since regenerative angiogenesis fails to consistently induce sufficient reperfusion to facilitate repair, targeted manipulation of angiogenesis is clinically desirable. The Wilms' tumour suppressor (Wt1) is a transcription factor which regulates numerous genes and cellular processes, including many intrinsic to angiogenesis. We hypothesise that WT1 in the endothelium influences the angiogenic function of endothelial cells. WT1 was identified in endothelial and non-endothelial cells comprising vessel outgrowths generated by cultured aortic rings from WT1-GFP reporter mice. Inducible deletion of WT1 from the endothelium (VE-Wt1 KO) significantly delayed angiogenesis in this assay (p < 0.05 relative to controls). In vivo, WT1 expression was evident in vascular endothelial and perivascular cells of the hindlimb as early as 3 days following femoral artery ligation to induce ischaemia, often in cells expressing epithelial and mesenchymal markers simultaneously. However, VE-Wt1 KO had no effect on hindlimb reperfusion (laser Doppler; days 0-28) or on vessel density (day 28). Similarly, VE-Wt1 KO had no effect on vessel density or expression of angiogenic factors (qRT-PCR) in sponges inserted subcutaneously in mice (20 days). To further understand the role of WT1 in angiogenesis, transcriptomic RNA expression analysis was performed in WT1+ and WT1- cells isolated (FACs) from sponges after implantation in WT1-GFP mice. WT1+ cells exhibited higher expression of genes involved in a number of processes relevant to tissue repair, including angiogenesis (p=3.11x10-8), wound healing (p=3.45x10-7) and epithelial-to-mesenchymal transition (EMT) (p=5.86x10-4). These results shed new light on the role of WT1 in ischaemic angiogenesis. In concurrence with previously published work, we show that deletion of endothelial WT1 can delay angiogenesis however, WT1 is not just instrumental in endothelial cells in this context. WT1 has a broader role in tissue repair in ischaemia, in part through regulation of cell transition (EMT). This work has improved our understanding of the regulatory role of WT1 in angiogenesis and repair, while revealing a number of novel insights into the function of WT1. This highlights WT1 as a potentially beneficial therapeutic target to facilitate regeneration in cardiovascular disease.
7

USING THE ZEBRAFISH MODEL TO DETERMINE THE ROLE OF THE HACE1 TUMOUR SUPPRESSOR IN NORMAL DEVELOPMENT AND TUMOURIGENESIS

McDonald, Lindsay 27 June 2011 (has links)
HACE1 is a tumour suppressor gene located at human chromosome 6q21. HACE1 is downregulated in Wilms’ tumour as well as several other human cancers. Its role in normal development remains unknown. The zebrafish has established itself as a robust model for studying vertebrate development and human cancers. A zebrafish hace1 homologue has been identified. Whole mount in situ hybridization (WISH) assays and colocalization studies demonstrate conserved hace1 expression. Moreover, morpholino knockdown of hace1 reveals perturbed cardiac development and function. Transgenic zebrafish harboring either wild type or dominant negative mutated C876S (C876S DN) human HACE1 genes have been generated. DN zebrafish display increased apoptosis, both untreated and following irradiation-induced cellular damage. There was no difference in cell cycle progression between wild type embryos and C876S DN. Further characterization of the HACE1 transgenic zebrafish model will serve to better our understanding of the role of human HACE1 in normal development and tumourigenesis.
8

Characterising the novel activation of wt1b in the notochord damage response of zebrafish larvae

Lopez Baez, Juan Carlos January 2015 (has links)
The notochord is the defining structure of all chordates. A semi-­‐flexible elongated tube of cells, it forms along the central axis of the embryo and provides axial support during development. It also acts as a signalling centre during early embryogenesis, controlling the patterning of a number of tissues and establishing the early body axis of the embryo. In vertebrates, the function of the notochord expands beyond early development. It creates morphogenic gradients for the patterned formation of the vertebral bodies and, in adults, the remnants of the notochord form the nucleus pulposus, a gel-­‐like structure with an integral role in the distribution of vertebral pressure in the intervertebral disc. Little is known about how the notochord copes with damage during embryogenesis, but degeneration of the nucleus pulposus can lead to debilitating spinal disorders. In this thesis, I use a zebrafish model system to present new data that describes the cellular behaviours associated with how the notochord copes with external damage and how this damage can influence the future development of the vertebrae. I have uncovered a novel damage response in the notochord of zebrafish larvae and characterised the morphogenetic changes involved in the process using transgenic fluorescent lines. I have explored the damage in the context of the Wilms’ Tumour 1 (Wt1) gene, a vertebrate-­‐conserved transcription factor, which has recently been associated with several regenerative responses, and discovered that one of its zebrafish orthologues, wt1b, becomes upregulated in the notochord damage response. I have used fluorescent confocal imaging and immunohistochemistry to present new evidence that shows that upon injury, the outer notochord sheath cells upregulate the expression of wt1b. Additionally, I have used time-­‐lapse microscopy to show that damage to the notochord induces novel morphological changes in the injured organ, which include the loss of cellularity of the inner vacuolated cells and the movement of the wt1b-­‐positive outer sheath cells into the injured lumen. Long-­‐term imaging experiments have also demonstrated the capacity of the notochord to heal the damage over time, which ultimately leads to the formation of an extra, smaller vertebra in the wounded area. Skeletal staining of these fish has revealed a previously unknown putative cartilage switch at the site of damage, which leads to the formation of the new vertebral body. This finding has been supported by the microarray analysis of the injured area, which shows the unexpected de-­‐novo expression of cartilage markers at the site of damage The work in this thesis identifies for the first time an endogenous repair mechanism in the notochord of zebrafish larvae and describes the cellular, genetic and molecular processes cotrolling this novel wt1b-­‐associated damage response.
9

DNMT3A P904L : un nouveau variant dans la tumeur de Wilms

Roy, Anne-Marie 09 1900 (has links)
La tumeur de Wilms est la tumeur du rein la plus courante chez les enfants. Actuellement, près de 80 % à 90 % des patients survivent, mais quelques patients ne répondront pas aux traitements ou auront une rechute. L’objectif de ce projet est de caractériser la nouvelle mutation P904L dans le gène DNMT3A retrouvée chez un patient atteint de la tumeur de Wilms qui était en rechute. L’impact de cette nouvelle mutation est encore inconnu, mais des mutations dans le gène de DNMT3A sont fréquemment retrouvées dans le cancer. Le contexte de la mutation dans le patient et sa récurrence dans d’autres cancers et syndrome nous portent à croire que cette mutation affecte la fonction de DNMT3A. La perte de fonction de DNMT3A ainsi que certains de ses mutants sont connus pour altérer des caractéristiques du cancer comme la différenciation et l’immortalisation des cellules. On sait aussi que les tumeurs de Wilms ont des cellules qui gardent un aspect non différencié ou embryonnaire. Nous supposons que l’impact de la mutation P904L sur DNMT3A contribue au développement de la tumeur de Wilms. Pour démontrer l’impact de cette nouvelle mutation sur la protéine et sur le développement tumoral, nous avons utilisé à la fois des tests fonctionnels classiques et le séquençage de nouvelle génération. Puisque DNMT3A est un gène qui affecte la méthylation de l’ADN et régule l’expression, nous avons évalué le profil d’expression de la mutation P904L pour voir son impact sur la fonction du gène DNMT3A. Nos travaux démontrent que la nouvelle mutation P904L cause une perte de fonction de l’enzyme DNMT3A. Cette mutation altère le renouvellement cellulaire et la migration en plus de moduler la réponse à des agents thérapeutiques. Nous avons aussi constaté que la mutation module l’expression génique et que cette modulation est cohérente avec le profil d’expression du patient. En conclusion, nous suggérons trois mécanismes par lesquels le mutant contribue à la progression et au développement de la tumeur de Wilms. Nous démontrons aussi la nécessité d’approfondir nos connaissances sur cette tumeur afin de pouvoir proposer de nouvelles options thérapeutiques aux patients en rechute ou qui ne répondent pas aux traitements classiques. / Wilms tumours are the most common kidney tumour in children. As of now, almost 80 % to 90 % of the patients survive but there is still some who do not respond. This project objective is to study the novel mutation P904L in the DNMT3A gene discovered in a relapse Wilms tumour’s patient. The impact of this variant is unknown, but mutations in DNMT3A are frequently found in cancer. The context of the mutation in the patient and the recurrence of this mutation in other cancers and syndrome make us believe that it is affecting the function of the DNMT3A protein. Loss of function and some mutations of DNMT3A are known to affect crucial characteristics of cancers such as differentiation and immortalization. It is also known that Wilms tumours are made of undifferentiated or embryonic looking cells. We supposed that the impact of the mutation on DNMT3A protein contribute to the development of the tumour. To prove that this new mutation is affecting the protein and the development of the tumour, we used both functional assays and next generation sequencing technologies. Because DNMT3A is a gene affecting the methylation of the DNA and thus regulating gene expression, we used expression profile to assess the impact of the mutation on the enzyme DNMT3A. We demonstrate that the new mutation P904L causes a loss of function of the DNMT3A protein. This mutation affects the self-renew and the migration of the cells. Moreover, it modulates the response to drugs. We also found that the mutation modulates the gene expression in the cell line and this modulation is coherent with the expression pattern of the patient. In conclusion, we suggest three mechanisms by which this new mutant contributes to the development and progression of Wilms tumours. We also show that there is a need to further our knowledge of this tumour in order to propose new therapeutics options to non-responsive patient.
10

The origins and heterogeneity of adipose tissue : investigating the role of the Wilms' tumour 1 (Wt1) gene

Cleal, Louise Kathleen January 2018 (has links)
Largely as a consequence of the ongoing obesity epidemic, research into adipose tissue biology has increased substantially in recent years. Worldwide, the number of people classed as overweight or obese is growing, and this represents a major public health concern. Adipose tissue is broadly divided into two types; white and brown. Whilst white adipose tissue (WAT) functions to store and mobilise triglycerides, brown adipose tissue burns chemical energy to generate heat. WAT is further divided into visceral “bad” fat and subcutaneous “good” fat depots, and it is an increase in the former that is linked to obesity-associated diseases. As well as adipocytes, several other cell types including haematopoietic and endothelial are found within adipose tissue, and comprise the stromal vascular fraction (SVF). Adipocyte precursor cells (APCs) also reside within the SVF and are essential for the maintenance and expansion of adipose tissue. The protein encoded by the Wilms’ tumour 1 (Wt1) gene is predominantly known to function as a transcription factor, but also has a role in post-transcriptional processing. Deletion of Wt1 in adult mice results in a considerable loss of fat tissue. Moreover, recent work has revealed that a proportion of the APCs from all visceral WAT depots express Wt1, therefore revealing heterogeneity within the APC population. Additionally, visceral WAT depots are encapsulated by a WT1 expressing mesothelial layer, which has its origins in the lateral plate mesoderm (LPM), and can give rise to mature adipocytes. Lineage tracing has demonstrated that a significant proportion of the mature adipocytes in all adult visceral WAT depots (but not subcutaneous) are derived from cells that express Wt1 in late gestation. These findings uncovered key ontogenetic differences between visceral and subcutaneous WAT and led us to ask whether Wt1 functions in visceral adipose tissue biology. Preliminary work has shown that adipocytes derived from Wt1 expressing (Wt1+) precursor cells have fewer, larger lipid droplets than those derived from non-Wt1 expressing (Wt1-) precursors. In this thesis, this heterogeneity is explored further using a Wt1GFP/+ knock-in mouse. When Wt1+ and Wt1- APCs are cultured separately, the Wt1+ population differentiate into adipocytes more readily. Moreover, the Wt1+ APCs are more proliferative than the Wt1-. Preliminary results also suggest that the Wt1+ APCs may secrete a factor(s) that causes the Wt1- APCs to exhibit improved adipogenic differentiation, a result that is supported by data from comparative transcriptomic analysis. Finally, the percentage of APCs decreases when mice are fed a high fat diet. Interestingly, this decrease is more pronounced for the Wt1+ population. Therefore, it appears that as well as exhibiting differing behaviours in vitro, the Wt1+ and Wt1- populations respond differently to physiologically relevant conditions in vivo. Whilst the LPM is a major source of visceral WAT, the origin of subcutaneous WAT is currently unknown. Here, the Prx1-Cre and Prx1-CreERT2 mouse lines are used to investigate this. It is shown that the majority of subcutaneous WAT adipocytes and APCs are labelled by Prx1-Cre, however this is not the case for most of the visceral WAT depots. The exception to this is the pericardial (heart fat) depot, in which approximately 70% of the adipocytes and 40% of the APCs are labelled. Moreover, a proportion of the Prx1-Cre labelled pericardial APCs also express Wt1, therefore suggesting additional heterogeneity. Preliminary results show that this heterogeneity may have functional consequences, at least in vitro. Additionally, lineage tracing studies suggest that the somatic LPM may be one source of subcutaneous WAT and pericardial visceral WAT Finally, it is shown that the conditional deletion of Wt1 in the Prx1-Cre lineage results in abnormal diaphragm development. Congenital diaphragmatic hernia (CDH) is severe birth defect, the etiology of which is not well understood. Here, a new model of CDH has been developed, and the cellular and molecular mechanisms responsible for the defect in this model are investigated.

Page generated in 0.0916 seconds