• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatio-temporal analysis of wind power prediction errors / Išgaunamos vėjo enegijos prognozės paklaidų analizė

Vlasova, Julija 16 August 2007 (has links)
Nowadays there is no need to convince anyone about the necessity of renewable energy. One of the most promising ways to obtain it is the wind power. Countries like Denmark, Germany or Spain proved that, while professionally managed, it can cover a substantial part of the overall energy demand. One of the main and specific problems related to the wind power management — development of the accurate power prediction models. Nowadays State-Of-Art systems provide predictions for a single wind turbine, wind farm or a group of them. However, the spatio-temporal propagation of the errors is not adequately considered. In this paper the potential for improving modern wind power prediction tool WPPT, based on the spatio-temporal propagation of the errors, is examined. Several statistical models (Linear, Threshold, Varying-coefficient and Conditional Parametric) capturing the cross-dependency of the errors, obtained in different parts of the country, are presented. The analysis is based on the weather forecast information and wind power prediction errors obtained for the territory of Denmark in the year 2004. / Vienas iš perspektyviausių bei labiausiai plėtojamų atsinaujinančių energijos šaltinių - vėjas. Tokios Europos Sąjungos šalys kaip Danija, Vokietija bei Ispanija savo patirtimi įrodė, jog tinkamai valdomas bei vystomas vėjo ūkis gali padengti svarią šalies energijos paklausos dalį. Pagal Europos Sąjungos direktyvą 2001/77/EC Lietuva yra įsipareigojusi iki 2010 m. pasiekti, kad elektros energijos gamyba iš atsinaujinančių energijos išteklių sudarytų 7% suvartojamos elektros energijos. Šių įsipareigojimų įvykdymui Lietuvos vyriausybės priimtu nutarimu yra nustatyta atsinaujinančių energijos išteklių naudojimo skatinimo tvarka, pagal kurią numatyta palaipsniui plėsti vėjo energijos naudojimą šalyje. Planuojama, kad iki 2010 m. bus pastatyta 200 MW bendros galios vėjo elektrinių, kurios gamins apie 2,2% visos suvartojamos elektros energijos [Marčiukaitis, 2007]. Didėjant vėjo energijos daliai energetikos sistemoje, Lietuvoje ateityje kils sistemos balansavimo problemų dėl nuolatinių vėjo jėgainių galios svyravimų. Kaip rodo kitų šalių patirtis, vėjo elektrinių galios prognozė yra efektyvi priemonė, leidžianti išspręsti šias problemas. Šiame darbe pristatyti keletas statistinių modelių bei metodų, skirtų išgaunamos vėjo energijos prognozėms gerinti. Analizė bei modeliavimas atlikti nagrinėjant Danijos WPPT (Wind Power Prediction Tool) duomenis bei meteorologines prognozes. Pagrindinis darbo tikslas - modifikuoti WPPT, atsižvelgiant į vėjo krypties bei stiprio įtaką energijos... [toliau žr. visą tekstą]
2

Short-Term Wind Power Forecasts using Doppler Lidar

January 2014 (has links)
abstract: With a ground-based Doppler lidar on the upwind side of a wind farm in the Tehachapi Pass of California, radial wind velocity measurements were collected for repeating sector sweeps, scanning up to 10 kilometers away. This region consisted of complex terrain, with the scans made between mountains. The dataset was utilized for techniques being studied for short-term forecasting of wind power by correlating changes in energy content and of turbulence intensity by tracking spatial variance, in the wind ahead of a wind farm. A ramp event was also captured and its propagation was tracked. Orthogonal horizontal wind vectors were retrieved from the radial velocity using a sector Velocity Azimuth Display method. Streamlines were plotted to determine the potential sites for a correlation of upstream wind speed with wind speed at downstream locations near the wind farm. A "virtual wind turbine" was "placed" in locations along the streamline by using the time-series velocity data at the location as the input to a modeled wind turbine, to determine the extractable energy content at that location. The relationship between this time-dependent energy content upstream and near the wind farm was studied. By correlating the energy content with each upstream location based on a time shift estimated according to advection at the mean wind speed, several fits were evaluated. A prediction of the downstream energy content was produced by shifting the power output in time and applying the best-fit function. This method made predictions of the power near the wind farm several minutes in advance. Predictions were also made up to an hour in advance for a large ramp event. The Magnitude Absolute Error and Standard Deviation are presented for the predictions based on each selected upstream location. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2014
3

The relationship between weather forecasts and observations for predicting electricity output from wind turbines / Förhållandet mellan väderprognoser och observationer för att förutsäga elproduktion från vindkraftverk

Stamp, Alexander January 2017 (has links)
Wind power production is of growing importance to many countries around the world. To improve reliability and power grid stability related to wind power, forecasting of wind power is becoming an important commercial and research area. Machine learning methods are considered to be highly valuable when making predictions on time series data and as such have become prominent within wind forecasting as well. This thesis extends an existing neural network prediction system with new input data series, in particular the observed wind speed from the wind farm itself. The goal was to investigate the effect this new data series has, and whether or not it could be used to improve predictions as compared to the baseline prediction system defined within this thesis. To do this multiple methods of including the observed wind speed are developed, including a multi-stage network concept. These results are statistically tested to give more evidence for their comparison to baseline. The results show that the multi-stage network concept can use the observed wind speed to improve performance over the baseline case for specific prediction horizons. / Betydelsen för vindkraftsproduktion växer i länder runt om i världen. För att förbättratillförlitligheten och elnätstabiliteten i vindkraften blir dess prognoser viktiga kommersielltoch ett forskningsområde. Maskininlärningsmetoder anses vara mycket värdefullanär man gör förutsägelser om tidsseriedata och har därmed framträdat inom vindprognoser. Detta arbete utökar ett existerande prediktionssystem av neurala nätverk med ny indata,med särskilt den observerade vindhastigheten från själva vindkraftparken. Måletvar att undersöka effekten av denna nya dataserie, och huruvida den skulle kunna användasför att förbättra förutsägelserna jämfört med det befintliga referensprognossystemetdefinierat i denna uppsats. För att kunna göra detta utvecklas flera metoder för att inkludera den observeradevindhastigheten, inklusive ett flerstegs nätverkskoncept. Dessa resultat är statistiskt testadeför att ge mer grund i deras jämförelse med referensmodellen. Resultaten visar att detflerstega nätverkskonceptet kan använda den observerade vindhastigheten för att förbättraprestanda över referensmodellen för specifika prediktionshorisonter.
4

Using Unsupervised Machine Learning for Outlier Detection in Data to Improve Wind Power Production Prediction / Användning av oövervakad maskininlärning för outlier-identifikation i data för att förbättra prediktioner av vindkraftsproduktion

Åkerberg, Ludvig January 2017 (has links)
The expansion of wind power for electrical energy production has increased in recent years and shows no signs of slowing down. This unpredictable source of energy has contributed to destabilization of the electrical grid causing the energy market prices to vary significantly on a daily basis. For energy producers and consumers to make good investments, methods have been developed to make predictions of wind power production. These methods are often based on machine learning were historical weather prognosis and wind power production data is used. However, the data often contain outliers, causing the machine learning methods to create inaccurate predictions. The goal of this Master’s Thesis was to identify and remove these outliers from the data so that the accuracy of machine learning predictions can improve. To do this an outlier detection method using unsupervised clustering has been developed and research has been made on the subject of using machine learning for outlier detection and wind power production prediction. / Vindkraftsproduktion som källa för hållbar elektrisk energi har på senare år ökat och visar inga tecken på att sakta in. Den här oförutsägbara källan till energi har bidragit till att destabilisera elnätet vilket orsakat dagliga kraftiga svängningar i priser på elmarknaden. För att elproducenter och konsumenter ska kunna göra bra investeringar har metoder för att prediktera vindkraftsproduktionen utvecklats. Dessa metoder är ofta baserade på maskininlärning där historiska data från väderleksprognoser och vindkraftsproduktion använts. Denna data kan innehålla så kallade outliers, vilket resulterar i försämrade prediktioner från maskininlärningsmetoderna. Målet med det här examensarbetet var att identifiera och ta bort outliers från data så att prediktionerna från dessa metoder kan förbättras. För att göra det har en metod för outlier-identifikation utveklats baserad på oövervakad maskininlärning och forskning har genomförts på områdena inom maskininlärning för att identifiera outliers samt prediktion för vindkraftsproduktion.
5

WIND POWER PREDICTION MODEL BASED ON PUBLICLY AVAILABLE DATA: SENSITIVITY ANALYSIS ON ROUGHNESS AND PRODUCTION TREND

Sakthi, Gireesh January 2019 (has links)
The wind power prediction plays a vital role in a wind power project both during the planning and operational phase of a project. A time series based wind power prediction model is introduced and the simulations are run for different case studies. The prediction model works based on the input from 1) nearby representative wind measuring station 2) Global average wind speed value from Meteorological Institute Uppsala University mesoscale model (MIUU) 3) Power curve of the wind turbine. The measured wind data is normalized to minimize the variation in the wind speed and multiplied with the MIUU to get a distributed wind speed. The distributed wind speed is then used to interpolate the wind power with the help of the power curve of the wind turbine. The interpolated wind power is then compared with the Actual Production Data (APD) to validate the prediction model. The simulation results show that the model works fairly predicting the Annual Energy Production (AEP) on monthly averages for all sites but the model could not follow the APD trend on all cases. The sensitivity analysis shows that the variation in production does not depend on ’the variation in roughness class’ nor ’the difference in distance between the measuring station and the wind farm’. The thesis has been concluded from the results that the model works fairly predicting the AEP for all cases within the variation bounds. The accuracy of the model has been validated only for monthly averages since the APD was available only on monthly averages. But the accuracy could be increased based on future work, to assess the Power law exponent (a) parameter for different terrain and validate the model for different time scales provided if the APD is available on different time scales.

Page generated in 0.1148 seconds