Spelling suggestions: "subject:"find speed prediction"" "subject:"kind speed prediction""
1 |
Modeling of High-Dimensional Industrial Data for Enhanced PHM using Time Series Based Integrated Fusion and Filtering TechniquesCai, Haoshu 25 May 2022 (has links)
No description available.
|
2 |
Uncertainty Quantification in Flow and Flow Induced Structural ResponseSuryawanshi, Anup Arvind January 2015 (has links) (PDF)
Response of flexible structures — such as cable-supported bridges and aircraft wings — is associated with a number of uncertainties in structural and flow parameters. This thesis is aimed at efficient uncertainty quantification in a few such flow and flow-induced structural response problems.
First, the uncertainty quantification in the lift force exerted on a submerged body in a potential flow is considered. To this end, a new method — termed here as semi-intrusive stochastic perturbation (SISP) — is proposed. A sensitivity analysis is also performed, where for the global sensitivity analysis (GSA) the Sobol’ indices are used. The polynomial chaos expansion (PCE) is used for estimating these indices. Next, two stability problems —divergence and flutter — in the aeroelasticity are studied in the context of reliability based design optimization (RBDO). Two modifications are proposed to an existing PCE-based metamodel to reduce the computational cost, where the chaos coefficients are estimated using Gauss quadrature to gain computational speed and GSA is used to create nonuniform grid to reduce the cost even further. The proposed method is applied on a rectangular unswept cantilever wing model. Next, reliability computation in limit cycle oscillations (LCOs) is considered. While the metamodel performs poorly in this case due to bimodality in the distribution, a new simulation-based scheme proposed to this end. Accordingly, first a reduced-order model (ROM) is used to identify the critical region in the random parameter space. Then the full-scale expensive model is run only over a this critical region. This is applied to the rectangular unswept cantilever wing with cubic and fifth order stiffness terms in its equation of motion.
Next, the wind speed is modeled as a spatio-temporal process, and accordingly new representations of spatio-temporal random processes are proposed based on tensor decompositions of the covariance kernel. These are applied to three problems: a heat equation, a vibration, and a readily available covariance model for wind speed. Finally, to assimilate available field measurement data on wind speed and to predict based on this assimilation, a new framework based on the tensor decompositions is proposed. The framework is successfully applied to a set of measured data on wind speed in Ireland, where the prediction based on simulation is found to be consistent with the observed data.
|
3 |
Neural Network Modeling for Prediction under Uncertainty in Energy System Applications. / Modélisation à base de réseaux de neurones dédiés à la prédiction sous incertitudes appliqué aux systèmes energétiquesAk, Ronay 02 July 2014 (has links)
Cette thèse s’intéresse à la problématique de la prédiction dans le cadre du design de systèmes énergétiques et des problèmes d’opération, et en particulier, à l’évaluation de l’adéquation de systèmes de production d’énergie renouvelables. L’objectif général est de développer une approche empirique pour générer des prédictions avec les incertitudes associées. En ce qui concerne cette direction de la recherche, une approche non paramétrique et empirique pour estimer les intervalles de prédiction (PIs) basés sur les réseaux de neurones (NNs) a été développée, quantifiant l’incertitude dans les prédictions due à la variabilité des données d’entrée et du comportement du système (i.e. due au comportement stochastique des sources renouvelables et de la demande d'énergie électrique), et des erreurs liées aux approximations faites pour établir le modèle de prédiction. Une nouvelle méthode basée sur l'optimisation multi-objectif pour estimer les PIs basée sur les réseaux de neurones et optimale à la fois en termes de précision (probabilité de couverture) et d’information (largeur d’intervalle) est proposée. L’ensemble de NN individuels par deux nouvelles approches est enfin présenté comme un moyen d’augmenter la performance des modèles. Des applications sur des études de cas réels démontrent la puissance de la méthode développée. / This Ph.D. work addresses the problem of prediction within energy systems design and operation problems, and particularly the adequacy assessment of renewable power generation systems. The general aim is to develop an empirical modeling framework for providing predictions with the associated uncertainties. Along this research direction, a non-parametric, empirical approach to estimate neural network (NN)-based prediction intervals (PIs) has been developed, accounting for the uncertainty in the predictions due to the variability in the input data and the system behavior (e.g. due to the stochastic behavior of the renewable sources and of the energy demand by the loads), and to model approximation errors. A novel multi-objective framework for estimating NN-based PIs, optimal in terms of both accuracy (coverage probability) and informativeness (interval width) is proposed. Ensembling of individual NNs via two novel approaches is proposed as a way to increase the performance of the models. Applications on real case studies demonstrate the power of the proposed framework.
|
Page generated in 0.1294 seconds