• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of ultra-wideband wireless communication inside electromagnetically ultra small confined environments

Gelabert, Javier January 2012 (has links)
Ultra-wideband (UWB) communication has been the subject of extensive research in recent years due to its unique capabilities and potential applications, particularly in short-range multiple access wireless communications. However, many important aspects of UWB-based communication systems have not yet been thoroughly investigated. The propagation of UWB signals inside very small enclosed environments is one of the important issues with significant impacts on the future direction, scope, and generally the extent of the success of UWB technology. The objective of this thesis is to obtain a more thorough and comprehensive understanding of ultra-small UWB channels for communication applications and design issues for enhancing the data rate of UWB systems. This works supports the postulation of a high capacity UWB wireless interconnect scheme for communicating devices within conducting enclosures – a wireless “backplane”. This thesis proposes the use of an Ultra-Wide Bandwidth (UWB) ultra-small scale wireless interconnect scheme for use within electrically small enclosures. Such ultra-small environments (size ≤ 10 wavelengths) are topologically much more complex, being more cluttered, than typical indoor environments (size ≥ 10 wavelengths). The concept is presented through two different scenarios. Firstly, a PC Tower case is presented as a model environment and the work seeks to present the optimum channel performance, where EMI issues are discussed and problem avoidance proposed. Secondly, in order to extrapolate the different results from the study inside the PC, an investigation is carried out using an Aluminium tower case as a more generic model environment. The analysis is based on the behaviour of box modes within a conducting resonator enclosure and the effective communications bandwidth for UWB systems for different sizes and components within. From these general considerations the research presents theoretical and experimental results from which are derived the communications metrics measured within enclosures. Simulations of the different scenarios are performed using different techniques such as ray tracing and a full wave model, based on CST Microstripes. Empirical data is recorded using a vector network analyser (VNA)-based wideband channel sounding system where channel measurements are carried out in every scenario regarding different aspects such as frequency response and time domain analysis, evaluation of the channel capacity, power delay study and the nature of the environment.
12

Leveraging Software-Defined Radio for a Scalable Wide-band Wireless Channel Measurement System

Jamison, James 01 January 2018 (has links)
Wireless channel characterization is important for determining both the requirements for a wireless system and its resulting reliability. Wireless systems are becoming ever more pervasive and thus are expected to operate in increasingly more cluttered environments. While these devices may be fixed in location, the channel is still far from ideal due to multipath. Under such conditions, it is desirable to have a means of taking wireless channel measurements in a low-cost and distributed manner, which is not always possible using typical channel measurement equipment. This thesis leverages a software-defined radio (SDR) platform to perform wideband wireless channel measurements. Specifically, the system can measure the scalar frequency response of a wireless channel in a distributed manner and provides measurements with an average mean-squared error of 0.018 % σ and a median error not exceeding 0.631 dB when compared to measurements taken with a vector network analyzer. This accuracy holds true in a highly multipath environment, with a measurement range of ~40 dB. The system is also capable of scaling to multiple wireless links which will be measured simultaneously (up to three links are demonstrated). After validating the measurement system, a measurement campaign is undertook using the system in a highly multipath environment to demonstrate a possible application of the system.
13

Signal distortion caused by tree foliage in a 2.5 GHz channel

Pélet, Eric Robert 12 December 2003
A fixed terrestrial wireless system such as the Microwave Multi-channel Distribution Service (MMDS) can be used as the ``last mile' to provide a high speed Internet connection from a base station to a home in a rural or suburban residential area. Such a broadband wireless system works very well under line-of-sight transmission. It works quite well even if the line-of-sight is obstructed with a large number of trees. However, when trees obstruct the line-of-sight, under conditions of wind, the user may experience loss of the RF signal from time to time. This is especially true under gusty conditions. As part of this research a high precision DSP-based measuring system is devised to accurately measure and characterize the distortions caused by tree foliage on the RF line-of-sight signal. The approach is to digitally generate a signal composed of several tones, up-convert the signal to 2.5 GHz and send it through tree foliage to a receiver where the signal is down-converted and sampled for a duration of five seconds. The samples collected are processed using Matlab to compute the temporal amplitude and phase variations of the tones. The measurement system provides estimates of the amplitude and phase of the receive tones with a time resolution of 3.2 ms. The standard deviation of the amplitude estimates is 0.3\% of the actual amplitude of the tones and the standard deviation of the phase estimates is 0.23 degree. This accuracy is obtained when the signal-to-noise ratio of the receive signal is greater than 20 dB. Measurement in the field with tree foliage in the line-of-sight shows that the swaying of the branches in the wind can cause rapid signal fading. This research determines the type of fade, the depth and duration of the fade, as well as the fading rate.
14

Signal distortion caused by tree foliage in a 2.5 GHz channel

Pélet, Eric Robert 12 December 2003 (has links)
A fixed terrestrial wireless system such as the Microwave Multi-channel Distribution Service (MMDS) can be used as the ``last mile' to provide a high speed Internet connection from a base station to a home in a rural or suburban residential area. Such a broadband wireless system works very well under line-of-sight transmission. It works quite well even if the line-of-sight is obstructed with a large number of trees. However, when trees obstruct the line-of-sight, under conditions of wind, the user may experience loss of the RF signal from time to time. This is especially true under gusty conditions. As part of this research a high precision DSP-based measuring system is devised to accurately measure and characterize the distortions caused by tree foliage on the RF line-of-sight signal. The approach is to digitally generate a signal composed of several tones, up-convert the signal to 2.5 GHz and send it through tree foliage to a receiver where the signal is down-converted and sampled for a duration of five seconds. The samples collected are processed using Matlab to compute the temporal amplitude and phase variations of the tones. The measurement system provides estimates of the amplitude and phase of the receive tones with a time resolution of 3.2 ms. The standard deviation of the amplitude estimates is 0.3\% of the actual amplitude of the tones and the standard deviation of the phase estimates is 0.23 degree. This accuracy is obtained when the signal-to-noise ratio of the receive signal is greater than 20 dB. Measurement in the field with tree foliage in the line-of-sight shows that the swaying of the branches in the wind can cause rapid signal fading. This research determines the type of fade, the depth and duration of the fade, as well as the fading rate.
15

Impact of Mobility and Wireless Channel on the Performance of Wireless Networks

Ghaderi, Majid January 2006 (has links)
This thesis studies the impact of mobility and wireless channel characteristics, i. e. , variability and high bit-error-rate, on the performance of integrated voice and data wireless systems from network, transport protocol and application perspectives. <br /><br /> From the network perspective, we study the impact of user mobility on radio resource allocation. The goal is to design resource allocation mechanisms that provide seamless mobility for voice calls while being fair to data calls. In particular, we develop a distributed admission control for a general integrated voice and data wireless system. We model the number of active calls in a cell of the network as a Gaussian process with time-dependent mean and variance. The Gaussian model is updated periodically using the information obtained from neighboring cells about their load conditions. We show that the proposed scheme guarantees a prespecified dropping probability for voice calls while being fair to data calls. Furthermore, the scheme is stable, insensitive to user mobility process and robust to load variations. <br /><br /> From the transport protocol perspective, we study the impact of wireless channel variations and rate scheduling on the performance of elastic data traffic carried by TCP. We explore cross-layer optimization of the rate adaptation feature of cellular networks to optimize TCP throughput. We propose a TCP-aware scheduler that switches between two rates as a function of TCP sending rate. We develop a fluid model of the steady-state TCP behavior for such a system and derive analytical expressions for TCP throughput that explicitly account for rate variability as well as the dependency between the scheduler and TCP. The model is used to choose RF layer parameters that, in conjunction with the TCP-aware scheduler, improve long-term TCP throughput in wireless networks. A distinctive feature of our model is its ability to capture variability of round-trip-time, channel rate and packet error probability inherent to wireless communications. <br /><br /> From the application perspective, we study the performance of wireless messaging systems. Two popular wireless applications, the short messaging service and multimedia messaging service are considered. We develop a mathematical model to evaluate the performance of these systems taking into consideration the fact that each message tolerates only a limited amount of waiting time in the system. Using the model, closed-form expressions for critical performance parameters such as message loss, message delay and expiry probability are derived. Furthermore, a simple algorithm is presented to find the optimal temporary storage size that minimizes message delay for a given set of system parameters.
16

Impact of Mobility and Wireless Channel on the Performance of Wireless Networks

Ghaderi, Majid January 2006 (has links)
This thesis studies the impact of mobility and wireless channel characteristics, i. e. , variability and high bit-error-rate, on the performance of integrated voice and data wireless systems from network, transport protocol and application perspectives. <br /><br /> From the network perspective, we study the impact of user mobility on radio resource allocation. The goal is to design resource allocation mechanisms that provide seamless mobility for voice calls while being fair to data calls. In particular, we develop a distributed admission control for a general integrated voice and data wireless system. We model the number of active calls in a cell of the network as a Gaussian process with time-dependent mean and variance. The Gaussian model is updated periodically using the information obtained from neighboring cells about their load conditions. We show that the proposed scheme guarantees a prespecified dropping probability for voice calls while being fair to data calls. Furthermore, the scheme is stable, insensitive to user mobility process and robust to load variations. <br /><br /> From the transport protocol perspective, we study the impact of wireless channel variations and rate scheduling on the performance of elastic data traffic carried by TCP. We explore cross-layer optimization of the rate adaptation feature of cellular networks to optimize TCP throughput. We propose a TCP-aware scheduler that switches between two rates as a function of TCP sending rate. We develop a fluid model of the steady-state TCP behavior for such a system and derive analytical expressions for TCP throughput that explicitly account for rate variability as well as the dependency between the scheduler and TCP. The model is used to choose RF layer parameters that, in conjunction with the TCP-aware scheduler, improve long-term TCP throughput in wireless networks. A distinctive feature of our model is its ability to capture variability of round-trip-time, channel rate and packet error probability inherent to wireless communications. <br /><br /> From the application perspective, we study the performance of wireless messaging systems. Two popular wireless applications, the short messaging service and multimedia messaging service are considered. We develop a mathematical model to evaluate the performance of these systems taking into consideration the fact that each message tolerates only a limited amount of waiting time in the system. Using the model, closed-form expressions for critical performance parameters such as message loss, message delay and expiry probability are derived. Furthermore, a simple algorithm is presented to find the optimal temporary storage size that minimizes message delay for a given set of system parameters.
17

Measurement-based investigations of radio wave propagation: an exposé on building corner diffraction

Pirkl, Ryan J. 15 January 2010 (has links)
Predicting performance metrics for the next-generation of multi-mode and multi-antenna wireless communication systems demands site-specific knowledge of the wireless channel's underlying radio wave propagation mechanisms. This thesis describes the first measurement system capable of characterizing individual propagation mechanisms in situ. The measurement system merges a high-resolution spatio-temporal wireless channel sounder with a new field reconstruction technique to provide complete knowledge of the wireless channel's impulse response throughout a 2-dimensional region. This wealth of data may be combined with space-time filtering techniques to isolate and characterize individual propagation mechanisms. The utility of the spatio-temporal measurement system is demonstrated through a measurement-based investigation of diffraction around building corners. These measurements are combined with space-time filtering techniques and a new linear wedge diffraction model to extract the first semi-mpirical diffraction coefficient. Specific contributions of this thesis are: * The first ultra-wideband single-input multiple-output (SIMO) channel sounder based upon the sliding correlator architecture. * A quasi 2-dimensional field reconstruction technique based upon a conjoint cylindrical wave expansion of coherent perimeter measurements. * A wireless channel ``filming' technique that records the time-domain evolution of the wireless channel throughout a 2-dimensional region. * High-resolution measurements of the space-time wireless channel near a right-angled brick building corner. * The application of space-time filtering techniques to isolate the edge diffraction problem from the overall wireless channel. * An approximate uniform geometrical theory of diffraction (UTD)-style linear model describing diffraction by an impedance wedge. * The first-ever semi-empirical diffraction coefficient extracted from in situ measurement data. This thesis paves the way for several new avenues of research. The comprehensive measurement data provided by channel "filming" will enable researchers to develop and implement powerful space-time filtering techniques that facilitate measurement-based investigations of radio wave propagation. The measurement procedure described in this thesis may be adapted to extract realistic reflection and rough-surface scattering coefficients. Finally, exhaustive measurements of individual propagation mechanisms will enable the first semi-empirical propagation model that integrates empirical descriptions of propagation mechanisms into a UTD-style mechanistic framework.
18

Wireless Channel Equalization in Digital Communication Systems

Jalali, Sammuel 01 January 2012 (has links)
Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple "cooperative" algorithms for the cases of two and three cooperative algorithms. The "select absolutely larger equalized signal" and "majority vote" methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases.
19

Μετάδοση δεδομένων με χρήση πολλαπλών φερουσών / Multicarrier transmission

Ράμαη, Αλκέτα-Αικατερίνη 03 October 2011 (has links)
Η διαμόρφωση και η πολύπλεξη είναι από τα πιο σημαντικά τμήματα των συστημάτων ψηφιακής μετάδοσης και στόχος τους είναι να επιτύχουν την αποτελεσματική χρήση του καναλιού. Η τεχνική OFDM είναι μια μέθοδος διαμόρφωσης και πολύπλεξης για τη μετάδοση με πολλαπλές φέρουσες σε χρονικώς και συχνοτικώς επιλεκτικά κανάλια. Προσφέρει μεγαλύτερη ανοσία στη Διασυμβολική Παρεμβολή (ISI) και μπορεί να υλοποιηθεί εύκολα με χρήση του γρήγορου μετασχηματισμού Fourier. Η παρούσα διπλωματική εργασία στοχεύει στην καλή κατανόηση και παρουσίαση του ασύρματου καναλιού, του ισοδύναμου μοντέλου βασικής ζώνης του, καθώς και των φυσικών παραμέτρων, βάσει των οποίων κατηγοριοποιούμε τα ασύρματα συστήματα. Εξαιτίας των διαλείψεων πολυδιόδευσης, που δεν μπορούν να αποφευχθούν στα ασύρματα συστήματα, η τεχνική OFDM είναι περισσότερο κατάλληλη για αυτά τα συστήματα, παρά για τα ενσύρματα. Στη συνέχεια, προσομοιώνεται ένα σύστημα OFDM για διάφορα είδη καναλιών. Συγκεκριμένα, αρχικά θεωρείται ως περιβάλλον μετάδοσης το κανάλι AWGN και στη συνέχεια, το συχνοτικώς επιλεκτικό, σταθερό κανάλι. Στην επόμενη προσομοίωση χρησιμοποιήθηκε (συχνοτικώς επιλεκτικό) σταθερό κανάλι με εκθετική κρουστική απόκριση. Στις δύο τελευταίες προσομοιώσεις θεωρήσαμε κανάλι Rayleigh επίπεδης διάλειψης και ένα είδος συχνοτικώς επιλεκτικού καναλιού με διαλείψεις Rayleigh, αντίστοιχα. / Modulation and multiplexing are between the most important parts of a digital transmission system and their goal is to achieve an efficient use of the channel. Orthogonal Frequency Division Multiplexing (OFDM) is both a modulation and multiplexing method for multicarrier transmission through time and frequency selective channels. It offers a greater immunity to Inter-Symbol Interference (ISI) and can be easily implemented using the fast Fourier transform (FFT). This Diploma thesis aims at the interpretation and the presentation of wireless channel and OFDM technique, in detail. Initially, we described the wireless channel, its baseband equivalent, and the physical parameters that are used to classify the different types of it. Because of the multipath fading which is unavoidable in wireless systems, OFDM is more appropriate for these ones than for wire systems. Then, we simulate an OFDM system. The simulations take place in several types of (wireless) channel. Especially, we firstly considered an AWGN channel and then a frequency-selective, non-fading channel. We also used an exponential frequency-selective, non-fading channel. For the two last simulations we considered the one-tap (flat), Rayleigh fading channel, and a type of frequency-selective, fading channel.
20

INTERFERENCE MANAGEMENT IN DYNAMIC WIRELESS NETWORKS

Tolunay Seyfi (8810243) 07 May 2020 (has links)
<div> Interference management is necessary to meet the growth in demand for wireless data services. The problem was studied in previous work by assuming a fixed channel connectivity model, while network topologies tend to change frequently in practice. </div><div><br></div><div>The associations between cell edge mobile terminals and base stations in a wireless interference network that is backed by cooperative communication schemes is investigated and association decisions are identified that are information-theoretically optimal when taking the uplink-downlink average. Then, linear wireless networks are evaluated from a statistical point of view, where the associations between base stations and mobile terminals are fixed and channel fluctuations exist due to shadow fading. Moreover, the considered fading model is formed by having links in the wireless network, each subject independently to erasure with a known probability. </div><div><br></div><div>Throughout the information theoretic analysis, it is assumed that the network topology is known to the cooperating transmitting nodes. This assumption may not hold in practical wireless networks, particularly Ad-Hoc ones, where decentralized mobile nodes form a temporary network. Further, communication in many next generation networks, including cellular, is envisioned to take place over different wireless technologies, similar to the co-existence of Bluetooth, ZigBee, and WiFi in the 2.4 GHz ISM-Band. The competition of these wireless technologies for scarce spectrum resources confines their coexistence. It is hence elementary for collaborative interference management strategies to identify the channel type and index of a wireless signal, that is received, to promote intelligent use of available frequency bands. It is shown that deep learning based approaches can be used to identify interference between the wireless technologies of the 2.4 GHz ISM-Band effectively, which is compulsory for identifying the channel topology. The value of using deep neural network architectures such as CNN, CLDNN, LSTM, ResNet and DenseNet for this problem of Wireless Channel Identification is investigated. Here, the major focus is on minimizing the time, that takes for training, and keeping a high classification accuracy of the different network architectures through band and training SNR selection, Principal Component Analysis (PCA) and different sub-Nyquist sampling techniques. </div><div>Finally, a number theoretic approach for fast discovery of the network topology is proposed. More precisely, partial results on the simulation of the message passing model are utilized to present a model for discovering the network topology. Specifically, the minimum number of communication rounds needed to discover the network topology is examined. Here, a single-hop network is considered that is restricted to interference-avoidance, i.e., a message is successfully delivered if and only if the transmitting node is the only active transmitter connected to its receiving node. Then, the interference avoidance restriction is relaxed by assuming that receivers can eliminate interference emanating from already discovered transmitters. Finally, it is explored how the network size and the number of interfering transmitters per user adjust the sum of observations.</div><div><br></div>

Page generated in 0.1959 seconds