• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Energy Optimization for Wireless Sensor Networks using Hierarchical Routing Techniques

Abidoye, Ademola Philip January 2015 (has links)
Philosophiae Doctor - PhD / Wireless sensor networks (WSNs) have become a popular research area that is widely gaining the attraction from both the research and the practitioner communities due to their wide area of applications. These applications include real-time sensing for audio delivery, imaging, video streaming, and remote monitoring with positive impact in many fields such as precision agriculture, ubiquitous healthcare, environment protection, smart cities and many other fields. While WSNs are aimed to constantly handle more intricate functions such as intelligent computation, automatic transmissions, and in-network processing, such capabilities are constrained by their limited processing capability and memory footprint as well as the need for the sensor batteries to be cautiously consumed in order to extend their lifetime. This thesis revisits the issue of the energy efficiency in sensor networks by proposing a novel clustering approach for routing the sensor readings in wireless sensor networks. The main contribution of this dissertation is to 1) propose corrective measures to the traditional energy model adopted in current sensor networks simulations that erroneously discount both the role played by each node, the sensor node capability and fabric and 2) apply these measures to a novel hierarchical routing architecture aiming at maximizing sensor networks lifetime. We propose three energy models for sensor network: a) a service-aware model that account for the specific role played by each node in a sensor network b) a sensor-aware model and c) load-balancing energy model that accounts for the sensor node fabric and its energy footprint. These three models are complemented by a load-balancing model structured to balance energy consumption on the network of cluster heads that forms the backbone for any cluster-based hierarchical sensor network. We present two novel approaches for clustering the nodes of a hierarchical sensor network: a) a distance-aware clustering where nodes are clustered based on their distance and the residual energy and b) a service-aware clustering where the nodes of a sensor network are clustered according to their service offered to the network and their residual energy. These approaches are implemented into a family of routing protocols referred to as EOCIT (Energy Optimization using Clustering Techniques) which combines sensor node energy location and service awareness to achieve good network performance. Finally, building upon the Ant Colony Optimization System (ACS), Multipath Routing protocol based on Ant Colony Optimization approach for Wireless Sensor Networks (MRACO) is proposed as a novel multipath routing protocol that finds energy efficient routing paths for sensor readings dissemination from the cluster heads to the sink/base station of a hierarchical sensor network. Our simulation results reveal the relative efficiency of the newly proposed approaches compared to selected related routing protocols in terms of sensor network lifetime maximization.
12

Potential-Based Routing In Wireless Sensor Networks

Praveen Kumar, M 03 1900 (has links)
Recent advances in VLSI technology, and wireless communication have enabled the development of tiny, low-cost sensor nodes that communicate over short distances. These sensor nodes, which consist of sensing, data processing, and wireless communication capabilities, suggest the idea of sensor networks based on collaborative effort of a large number of sensor nodes. Sensor networks hold the promise for numerous applications such as intrusion detection, weather monitoring, security and tactical surveillance, distributed computing, and disaster management. Several new protocols and algorithms have been proposed in the recent past in order to realize these applications. In this thesis, we consider the problem of routing in Wireless Sensor Networks (WSNs). Routing is a challenging problem in WSNs due to the inherent characteristics which distinguish these networks from the others. Several routing algorithms have been proposed for WSNs, each considering a specific network performance objective such as long network lifetime (ChangandTassiulas,2004), end-to-end delay guarantees (T.Heetal,2003), and data fusion (RazvanCristescuetal,2005) etc. In this thesis, we utilize the Potential-based Routing Paradigm to develop routing algorithms for different performance objectives of interest in WSNs. The basic idea behind the proposed approach is to assign a scalar called the potential to every sensor node in the network. Data is then forwarded to the neighbor with highest potential. Potentials cause the data to flow along certain paths. By defining potential fields appropriately, one can cause data to flow along preferred paths, so that the given performance objective is achieved. We have demonstrated the usefulness of this approach by considering three performance objectives, and defining potentials appropriately in each case. The performance objectives that we have considered are (i) maximizing the time to network partition, (ii) maximizing the packet delivery ratio, and (iii) Data fusion. In an operational sensor network, sensor nodes’ energy levels gradually deplete, leading eventually to network partition. A natural objective is to route packets in such a way that the time to network partition is maximized. We have developed a potential function for this objective. We analyzed simple network cases and used the insight to develop a potential function applicable to any network. Simulation results showed that considerable improvements in time to network partition can be obtained compared to popular approaches such as maximum lifetime routing, and shortest hop count routing. In the next step, we designed a potential function that leads to routes with high packet delivery ratios. We proposed a “channel-state aware” potential definition for a simple 2-relay network and performed a Markov-chain based analysis to obtain the packet delivery ratio. Considerable improvement was observed compared to a channel-state-oblivious policy. This motivated us to define a channel-state-dependent potential function for a general network. Simulation results showed that for a relatively slowly changing wireless network, our approach can provide up to 20% better performance than the commonly-used shortest-hop-count routing. Finally, we considered the problem of correlated data gathering in sensor networks. The routing approach followed in literature is to construct a spanning tree rooted at the sink. Every node in the tree aggregates its data with the data from its children in order to reduce the number of transmitted bits. Due to this fact, the total energy cost of the data collection task is a function of the underlying tree structure. Noting that potential based routing schemes also result in a tree structure, we present a potential definition that results in the minimum energy cost tree under some special conditions. Specifically, we consider a scenario in which sensor nodes’ measurements are quantized to K values. The task at the sink is to construct a histogram of measurements of all sensor nodes. Sensor nodes do not directly send their measurements to sink. Instead, they construct a temporary histogram using the data from its children and forward it to its parent node in the tree. We present a potential definition that results in the minimum energy cost tree under some conditions on sensor nodes’ measurements. We include both the transmission energy cost as well as the energy cost associated with the aggregation process.
13

Simulation and optimization of energy consumption in wireless sensor networks / Simulation et optimisation de la consommation énergétique de réseaux de capteurs sans fil

Zhu, Nanhao 11 October 2013 (has links)
Les grandes évolutions de la technique de systèmes embarqués au cours des dernières années ont permis avec succès la combinaison de la détection, le traitement des données, et diverses technologies de communication sans fil tout en un nœud. Les réseaux de capteurs sans fil (WSN) qui se composent d’un grand nombre de ces nœuds ont attiré l’attention du monde entier sur les établissements scolaires et les communautés industrielles, puisque leurs applications sont très répandues dans des domaines tels que la surveillance de l’environnement, le domaine militaire, le suivi des événements et la détection des catastrophes. En raison de la dépendance sur la batterie, la consommation d’énergie des réseaux de capteurs a toujours été la préoccupation la plus importante. Dans cet article, une méthode mixte est utilisée pour l’évaluation précise de l’énergie sur les réseaux de capteurs, ce qui inclut la conception d’un environnement de SystemC simulation base au niveau du système et au niveau des transactions pour l’exploration de l’énergie, et la construction d’une plate-forme de mesure d’énergie pour les mesures de nœud banc d’essai dans le monde réel pour calibrer et valider à la fois le modèle de simulation énergétique de nœud et le modèle de fonctionnement. La consommation d’énergie élaborée de plusieurs différents réseaux basés sur la plate-forme de nœud sont étudiées et comparées dans différents types de scénarios, et puis des stratégies globales d’économie d’énergie sont également données après chaque scénario pour les développeurs et les chercheurs qui se concentrent sur la conception des réseaux de capteurs efficacité énergétique. Un cadre de l’optimisation basée sur un algorithme génétique est conçu et mis en œuvre à l’aide de MATLAB pour les réseaux de capteurs conscients de l’énergie. En raison de la propriété de recherche global des algorithmes génétiques, le cadre de l’optimisation peut automatiquement et intelligemment régler des centaines de solutions possibles pour trouver le compromis le plus approprié entre la consommation d’énergie et d’autres indicateurs de performance. Haute efficacité et la fiabilité du cadre de la recherche des solutions de compromis entre l’énergie de nœud, la perte de paquets réseau et la latence ont été prouvés par réglage paramètres de l’algorithme CSMA / CA de unslotted (le mode non-beacon de IEEE 802.15.4) dans notre simulation basé sur SystemC via une fonction de coût de la somme pondérée. En outre, le cadre est également disponible pour la tâche d’optimisation basée sur multi-scénarios et multi-objectif par l’étude d’une application médicale typique sur le corps humain. / The great technique developments of embedded system in recent years have successfully enabled the combination of sensing, data processing and various wireless communication technologies all in one node. Wireless sensor networks (WSNs) that consist of many of such node have gained worldwide attention from academic institutions and industrial communities, since their applications are widespread in such as environment monitoring, military fields, event tracing/tracking and disaster detection. Due to the reliance on battery, energy consumption of WSNs has always been the most significant concern. In this paper, a mixed method is employed for the accurate energy evaluation on WSNs, which involves the design of a transaction-level system-level based SystemC simulation environment for energy exploration, and the building of an energy measurement system platform for the real world testbed node measurements to calibrate and validate both node energy simulation model and operation model. Elaborate energy consumption of several different node platform based networks are investigated and compared under different kinds of scenarios, and then comprehensive energy-saving strategies are also given after each case scenario for the developers and researchers who focus on the energy-efficient WSNs design. A genetic algorithm (GA) based optimization framework is designed and implemented using MATLAB for the energy aware WSNs. Due to the global search property of genetic algorithms, the optimization framework is able to automatically and intelligently fine tune hundreds/thousands of potential solutions to find the most suitable tradeoff among energy consumption and other performance metrics. The framework’s high efficiency and reliability of finding the tradeoff solutions among node energy, network packet loss and latency have been proved by tuning unslotted CSMA/CA algorithm parameters (used by non-beacon mode of IEEE 802.15.4) in our SystemC-based simulation via a weighted sum cost function. Furthermore, the framework is also available for the multi-scenario and multi-objective based optimization task by studying a typical medical application on human body. Keywords: Wireless sensor networks (WSNs), energy consumption, simulation/emulation, SystemC, testbeds, measurements, calibration, optimization, genetic algorithms, performance metrics, weighted sum cost function, multi-scenario and multi-objective optimization, Pareto-front
14

On reliable and energy efficient massive wireless communications: the road to 5G

Leyva Mayorga, Israel 14 January 2019 (has links)
La quinta generación de redes móviles (5G) se encuentra a la vuelta de la esquina. Se espera provea de beneficios extraordinarios a la población y que resuelva la mayoría de los problemas de las redes 4G actuales. El éxito de 5G, cuya primera fase de estandarización ha sido completada, depende de tres pilares: comunicaciones tipo-máquina masivas, banda ancha móvil mejorada y comunicaciones ultra fiables y de baja latencia (mMTC, eMBB y URLLC, respectivamente). En esta tesis nos enfocamos en el primer pilar de 5G, mMTC, pero también proveemos una solución para lograr eMBB en escenarios de distribución masiva de contenidos. Específicamente, las principales contribuciones son en las áreas de: 1) soporte eficiente de mMTC en redes celulares; 2) acceso aleatorio para el reporte de eventos en redes inalámbricas de sensores (WSNs); y 3) cooperación para la distribución masiva de contenidos en redes celulares. En el apartado de mMTC en redes celulares, esta tesis provee un análisis profundo del desempeño del procedimiento de acceso aleatorio, que es la forma mediante la cual los dispositivos móviles acceden a la red. Estos análisis fueron inicialmente llevados a cabo por simulaciones y, posteriormente, por medio de un modelo analítico. Ambos modelos fueron desarrollados específicamente para este propósito e incluyen uno de los esquemas de control de acceso más prometedores: access class barring (ACB). Nuestro modelo es uno de los más precisos que se pueden encontrar en la literatura y el único que incorpora el esquema de ACB. Los resultados obtenidos por medio de este modelo y por simulación son claros: los accesos altamente sincronizados que ocurren en aplicaciones de mMTC pueden causar congestión severa en el canal de acceso. Por otro lado, también son claros en que esta congestión se puede prevenir con una adecuada configuración del ACB. Sin embargo, los parámetros de configuración del ACB deben ser continuamente adaptados a la intensidad de accesos para poder obtener un desempeño óptimo. En la tesis se propone una solución práctica a este problema en la forma de un esquema de configuración automática para el ACB; lo llamamos ACBC. Los resultados muestran que nuestro esquema puede lograr un desempeño muy cercano al óptimo sin importar la intensidad de los accesos. Asimismo, puede ser directamente implementado en redes celulares para soportar el tráfico mMTC, ya que ha sido diseñado teniendo en cuenta los estándares del 3GPP. Además de los análisis descritos anteriormente para redes celulares, se realiza un análisis general para aplicaciones de contadores inteligentes. Es decir, estudiamos un escenario de mMTC desde la perspectiva de las WSNs. Específicamente, desarrollamos un modelo híbrido para el análisis de desempeño y la optimización de protocolos de WSNs de acceso aleatorio y basados en cluster. Los resultados muestran la utilidad de escuchar el medio inalámbrico para minimizar el número de transmisiones y también de modificar las probabilidades de transmisión después de una colisión. En lo que respecta a eMBB, nos enfocamos en un escenario de distribución masiva de contenidos, en el que un mismo contenido es enviado de forma simultánea a un gran número de usuarios móviles. Este escenario es problemático, ya que las estaciones base de la red celular no cuentan con mecanismos eficientes de multicast o broadcast. Por lo tanto, la solución que se adopta comúnmente es la de replicar e contenido para cada uno de los usuarios que lo soliciten; está claro que esto es altamente ineficiente. Para resolver este problema, proponemos el uso de esquemas de network coding y de arquitecturas cooperativas llamadas nubes móviles. En concreto, desarrollamos un protocolo para la distribución masiva de contenidos, junto con un modelo analítico para su optimización. Los resultados demuestran que el modelo propuesto es simple y preciso, y que el protocolo puede reducir el con / La cinquena generació de xarxes mòbils (5G) es troba molt a la vora. S'espera que proveïsca de beneficis extraordinaris a la població i que resolga la majoria dels problemes de les xarxes 4G actuals. L'èxit de 5G, per a la qual ja ha sigut completada la primera fase del qual d'estandardització, depén de tres pilars: comunicacions tipus-màquina massives, banda ampla mòbil millorada, i comunicacions ultra fiables i de baixa latència (mMTC, eMBB i URLLC, respectivament, per les seues sigles en anglés). En aquesta tesi ens enfoquem en el primer pilar de 5G, mMTC, però també proveïm una solució per a aconseguir eMBB en escenaris de distribució massiva de continguts. Específicament, les principals contribucions són en les àrees de: 1) suport eficient de mMTC en xarxes cel·lulars; 2) accés aleatori per al report d'esdeveniments en xarxes sense fils de sensors (WSNs); i 3) cooperació per a la distribució massiva de continguts en xarxes cel·lulars. En l'apartat de mMTC en xarxes cel·lulars, aquesta tesi realitza una anàlisi profunda de l'acompliment del procediment d'accés aleatori, que és la forma mitjançant la qual els dispositius mòbils accedeixen a la xarxa. Aquestes anàlisis van ser inicialment dutes per mitjà de simulacions i, posteriorment, per mitjà d'un model analític. Els models van ser desenvolupats específicament per a aquest propòsit i inclouen un dels esquemes de control d'accés més prometedors: el access class barring (ACB). El nostre model és un dels més precisos que es poden trobar i l'únic que incorpora l'esquema d'ACB. Els resultats obtinguts per mitjà d'aquest model i per simulació són clars: els accessos altament sincronitzats que ocorren en aplicacions de mMTC poden causar congestió severa en el canal d'accés. D'altra banda, també són clars en què aquesta congestió es pot previndre amb una adequada configuració de l'ACB. No obstant això, els paràmetres de configuració de l'ACB han de ser contínuament adaptats a la intensitat d'accessos per a poder obtindre unes prestacions òptimes. En la tesi es proposa una solució pràctica a aquest problema en la forma d'un esquema de configuració automàtica per a l'ACB; l'anomenem ACBC. Els resultats mostren que el nostre esquema pot aconseguir un acompliment molt proper a l'òptim sense importar la intensitat dels accessos. Així mateix, pot ser directament implementat en xarxes cel·lulars per a suportar el trànsit mMTC, ja que ha sigut dissenyat tenint en compte els estàndards del 3GPP. A més de les anàlisis descrites anteriorment per a xarxes cel·lulars, es realitza una anàlisi general per a aplicacions de comptadors intel·ligents. És a dir, estudiem un escenari de mMTC des de la perspectiva de les WSNs. Específicament, desenvolupem un model híbrid per a l'anàlisi de prestacions i l'optimització de protocols de WSNs d'accés aleatori i basats en clúster. Els resultats mostren la utilitat d'escoltar el mitjà sense fil per a minimitzar el nombre de transmissions i també de modificar les probabilitats de transmissió després d'una col·lisió. Pel que fa a eMBB, ens enfoquem en un escenari de distribució massiva de continguts, en el qual un mateix contingut és enviat de forma simultània a un gran nombre d'usuaris mòbils. Aquest escenari és problemàtic, ja que les estacions base de la xarxa cel·lular no compten amb mecanismes eficients de multicast o broadcast. Per tant, la solució que s'adopta comunament és la de replicar el contingut per a cadascun dels usuaris que ho sol·liciten; és clar que això és altament ineficient. Per a resoldre aquest problema, proposem l'ús d'esquemes de network coding i d'arquitectures cooperatives anomenades núvols mòbils. En concret, desenvolupem un protocol per a realitzar la distribució massiva de continguts de forma eficient, juntament amb un model analític per a la seua optimització. Els resultats demostren que el model proposat és simple i precís / The 5th generation (5G) of mobile networks is just around the corner. It is expected to bring extraordinary benefits to the population and to solve the majority of the problems of current 4th generation (4G) systems. The success of 5G, whose first phase of standardization has concluded, relies in three pillars that correspond to its main use cases: massive machine-type communication (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable low latency communication (URLLC). This thesis mainly focuses on the first pillar of 5G: mMTC, but also provides a solution for the eMBB in massive content delivery scenarios. Specifically, its main contributions are in the areas of: 1) efficient support of mMTC in cellular networks; 2) random access (RA) event-reporting in wireless sensor networks (WSNs); and 3) cooperative massive content delivery in cellular networks. Regarding mMTC in cellular networks, this thesis provides a thorough performance analysis of the RA procedure (RAP), used by the mobile devices to switch from idle to connected mode. These analyses were first conducted by simulation and then by an analytical model; both of these were developed with this specific purpose and include one of the most promising access control schemes: the access class barring (ACB). To the best of our knowledge, this is one of the most accurate analytical models reported in the literature and the only one that incorporates the ACB scheme. Our results clearly show that the highly-synchronized accesses that occur in mMTC applications can lead to severe congestion. On the other hand, it is also clear that congestion can be prevented with an adequate configuration of the ACB scheme. However, the configuration parameters of the ACB scheme must be continuously adapted to the intensity of access attempts if an optimal performance is to be obtained. We developed a practical solution to this problem in the form of a scheme to automatically configure the ACB; we call it access class barring configuration (ACBC) scheme. The results show that our ACBC scheme leads to a near-optimal performance regardless of the intensity of access attempts. Furthermore, it can be directly implemented in 3rd Generation Partnership Project (3GPP) cellular systems to efficiently handle mMTC because it has been designed to comply with the 3GPP standards. In addition to the analyses described above for cellular networks, a general analysis for smart metering applications is performed. That is, we study an mMTC scenario from the perspective of event detection and reporting WSNs. Specifically, we provide a hybrid model for the performance analysis and optimization of cluster-based RA WSN protocols. Results showcase the utility of overhearing to minimize the number of packet transmissions, but also of the adaptation of transmission parameters after a collision occurs. Building on this, we are able to provide some guidelines that can drastically increase the performance of a wide range of RA protocols and systems in event reporting applications. Regarding eMBB, we focus on a massive content delivery scenario in which the exact same content is transmitted to a large number of mobile users simultaneously. Such a scenario may arise, for example, with video streaming services that offer a particularly popular content. This is a problematic scenario because cellular base stations have no efficient multicast or broadcast mechanisms. Hence, the traditional solution is to replicate the content for each requesting user, which is highly inefficient. To solve this problem, we propose the use of network coding (NC) schemes in combination with cooperative architectures named mobile clouds (MCs). Specifically, we develop a protocol for efficient massive content delivery, along with the analytical model for its optimization. Results show the proposed model is simple and accurate, and the protocol can lead to energy savings of up to 37 percent when compared to the traditional approach. / Leyva Mayorga, I. (2018). On reliable and energy efficient massive wireless communications: the road to 5G [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/115484 / TESIS

Page generated in 0.0668 seconds