• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 1
  • Tagged with
  • 38
  • 38
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nutrient and Biomass Contributions of Downed Woody Debris in Boreal Mixedwood Forests of Northeastern Ontario

Iraci, Jessica 25 July 2012 (has links)
Harvest-related decreases of downed woody debris (DWD) in forests may have important ecological implications; however, patterns of nutrient release from decaying DWD are poorly understood. The importance of DWD was investigated relative to biomass and nutrient pools in six, second-growth boreal mixedwood forest stands, differing by harvest regime near Kapuskasing, Ontario. Nutrient concentrations and mineralization trends using ion exchange resins at three proximities during the decay of Abies balsamea and Populus tremuloides were also examined. Concentrations of N, P, Ca, and Mg increased with decay, whereas K decreased. DWD was a minor contributor to biomass and nutrient pools. Inorganic N, P, Ca, and Mn were significant between harvest types with decay class interaction for N, Ca, and Mn. Species and proximity effects were found for Al, Fe, and K. These results suggest DWD may be a minor contributor to biomass and nutrient pools, but highlights its dynamic nature.
22

Nutrient and Biomass Contributions of Downed Woody Debris in Boreal Mixedwood Forests of Northeastern Ontario

Iraci, Jessica 25 July 2012 (has links)
Harvest-related decreases of downed woody debris (DWD) in forests may have important ecological implications; however, patterns of nutrient release from decaying DWD are poorly understood. The importance of DWD was investigated relative to biomass and nutrient pools in six, second-growth boreal mixedwood forest stands, differing by harvest regime near Kapuskasing, Ontario. Nutrient concentrations and mineralization trends using ion exchange resins at three proximities during the decay of Abies balsamea and Populus tremuloides were also examined. Concentrations of N, P, Ca, and Mg increased with decay, whereas K decreased. DWD was a minor contributor to biomass and nutrient pools. Inorganic N, P, Ca, and Mn were significant between harvest types with decay class interaction for N, Ca, and Mn. Species and proximity effects were found for Al, Fe, and K. These results suggest DWD may be a minor contributor to biomass and nutrient pools, but highlights its dynamic nature.
23

Effect of Woodpecker Damage and Wood Decay on Wood Utility Pole Strength

Steenhof, Mark January 2011 (has links)
In many regions of North America, Europe, and Australia, wood utility poles are used as main and secondary structural members for the support of electrical distribution and transmission lines. In the province of Ontario alone there are over 40000 H-frame, 6000 Gulfport, and thousands of single pole structures constructed of over 2 million wood utility poles (Pandey et al. 2010b). Currently, utility companies report an increasing number of woodpecker damage incidents on in-service utility poles (HONI 2010). In addition, many aging poles have woodpecker damage in combination with wood decay. Both these forms of degradation cause strength reductions in utility poles, making their structural integrity questionable. This has raised concerns regarding the safety of utility maintenance workers and the public, and the dependability of the electrical network. In response to these concerns, Hydro One Networks Incorporated (HONI) initiated a research project on the effect of woodpecker damage and wood decay on wood utility pole strength. The objective of the research was to develop methods of quantifying the strength reduction caused by woodpecker damage and wood decay. This information was then used to develop in-service assessment methods for determination of whether pole replacement is necessary when specific levels of woodpecker damage and wood decay are present. By developing better assessment methods, in-service utility poles will not be unnecessarily replaced, reducing maintenance costs. In this study, three analytical models were developed that predicted the theoretical cross-sectional strength reduction caused by the presence of woodpecker damage. A bending failure model was developed since, in the structural design of utility poles, bending moment stresses are known to be the critical design parameter. It was decided that the significance of shear stress in a cross-section should also be considered since the presence of woodpecker damage could cause shear stresses to be a significant parameter. As a result, a shear-bending and a shear failure model was developed to determine the significance of shear stress on cross-section behaviour. These models were developed for analysis purposes and were verified by the subsequent experimental program. A total of 28 new and in-service utility poles were received from HONI for experimental testing. The new poles were received in as-new condition, while the in-service poles received had varying levels of woodpecker damage and wood decay. The poles received were cut into 4.25 m lengths for beam testing. A single new pole and in-service specimen from each pole was tested as a control specimen without woodpecker damage to obtain reference utility pole bending strengths. The remainder of the new pole specimens were mechanically introduced with woodpecker damage, while the remainder of the in-service specimens were tested with natural woodpecker damage. The tested specimens were analyzed and the results were compared with the woodpecker damage analytical model predictions. Results indicated that the effect of woodpecker damage is well modelled by the woodpecker damage analytical models. Overall, the bending failure analytical model was preferable for cross-section analysis due to the accuracy of the model predictions and the simplicity of required calculations. It was evident from the experimental program that the presence of woodpecker damage can severely reduce the strength of utility poles, making replacement necessary according to CSA C22.3 No. 1 Cl. 8.3.1.3 (2006a). In-service specimen experimental results indicated that if wood decay is detected in wood utility poles, severe reduction in wood strength has occurred and the utility pole should be replaced. Analytical and experimental results were used to develop three application methods for determining whether utility pole replacement is necessary due to the presence of woodpecker damage. These three methods include the simplified method, the chart method, and the case-specific method. The simplified method allows determination of whether a utility pole should be replaced based only on knowledge of the most severe level of woodpecker damage present in a pole. The chart method takes into account additional factors such as the diameter of the pole at the location of the woodpecker damage and the width of the hole opening. The case-specific method is advantageous since it accounts for the parameters used in the chart method and allows the location of woodpecker damage along the length of a pole to be accounted for. The simplified and chart methods are preferable since they are relatively simple and easy to implement in the field. The case-specific method requires a full structural analysis of the utility pole in question to be undertaken and is useful for more accurately assessing whether replacement is necessary. These three methods show how the research completed can be used for improved assessment of in-service utility poles resulting in reduced unnecessary pole replacement and maintenance costs.
24

Conservation through management : cut wood as substrate for saproxylic organisms /

Lindhe, Anders, January 2004 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2004. / Härtill 4 uppsatser.
25

Factors that limit the occurrence of wood-decaying fungi /

Gustafsson, Mårten. January 2001 (has links) (PDF)
Lic.-avh. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 2 uppsatser.
26

Seleção de fungos degradadores de madeira para uso na destoca biológica de Eucalyptus spp. /

Negrão, Djanira Rodrigues, 1979- January 2011 (has links)
Resumo: O eucalipto é a arbórea mais plantada no Brasil, devido ao seu amplo uso e após seu corte, os tocos e raízes que permanecem no local, dificultam o manejo da cultura. Com base nessa necessidade, o objetivo do presente estudo foi avaliar as características fisiológicas e funcionais de fungos basidiomicotas, isolados de campos de reflorestamento de Eucalyptus spp., com vistas à possibilidade do uso destes na destoca natural. Os fungos Pycnoporus sanguineus, Lentinus bertieri, Xylaria sp. e Lentinula edodes e um isolado não identificado foram estudados. No primeiro experimento, avaliou-se a patogenicidade dos mesmos em plantas de eucalipto urograndis (10 meses de idade), através da inoculação de disco de meio de cultura colonizado e não colonizado (Testemunha). As avaliações foram feitas aos 30 e 60 dias após a inoculação, com base no tamanho das lesões internas e externas. No segundo experimento, avaliou-se o crescimento micelial dos fungos P. sanguineus, L. bertieri, Xylaria sp., L. edodes e S. ostrea, em substrato à base de serragem enriquecida com farelos, e em três composições de meios de cultura, Batata-Dextrose-Ágar (BDA); Malte-Ágar (MA) e Serragem-Dextrose-Ágar (SDA), e incubados a 23, 27 e 31ºC. No terceiro experimento, avaliou-se a produção das enzimas ligninocelulolíticas lacase e celulase, e outras ligadas à degradação de tecidos vegetais, as proteases, pectinases e lipase, em meios de cultura específicos. No quarto experimento, estudou-se, pelo método "soil block", a perda de massa (%) de corpos-de-prova de eucalipto urograndis, inoculados com os fungos P. sanguineus, L. bertieri, Xylaria sp. e L. edodes, mantidos sob dois regimes de umidade (50 e 100%), e avaliados aos 30, 60, 90 e 120 após inoculação. Estudaram-se também as características químicas da madeira, após 120 dias da inoculação / Abstract: The Eucalyptus spp. tree is the most planted in Brazil, due to its widespread use and after its use, the stumps and roots that remains in the area, hinder crop management. Based on this need, the purpose of this work was evaluate the physiological and functional characteristics of basidiomycetes fungi, obtained in reforestation fields of Eucalyptus spp., with the possibility of using the fungi in natural stump removal. Pycnoporus sanguineus, Lentinus bertieri, Xylaria sp., Stereum ostrea and a unidentified isolate, were studied. In the first, was evaluate the fungi pathogenicity in eucalipt urograndis plants (10 months old), by means of disk inoculation into culture medium colonized and non-colonized (control) by fungi. Evaluations were performed at 30 and 60 days after inoculation based on the external and internal size of lesions. In experiment 2, the mycelial growth of P. sanguineus, L. bertieri, Xylaria sp., L. edodes and S. ostrea was evaluated in bran and sawdust-based substrate, as well as in three culture media: Potato-Dextrose-Agar (PDA), Malt-Agar (MA) and Sawdust-Dextrose-Agar (SDA), and at three incubation temperatures, at 23, 27 and 31ºC. In experiment 3, the production of lignolytic enzymes lacase and cellulase, and other enzymes related to degradation of plant tissues, like protease, pectinases and lipase was assessed in specific culture media. In experiment 4, mass loss (%) and chemical features of eucalipt urograndis wood degraded by the soil block method were evaluated by the P. sanguineus, L. bertieri, Xylaria sp. and L. edodes fungi. Thus, test specimens were inoculated with the fungi and kept under two moisture regimes, 50 and 100%, and incubated at 25 ±2ºC. Mass loss was assessed at 30, 60, 90 and 120 days after inoculation. The chemical features of eucalipt urograndis test specimens were only analyzed at 120 days / Orientador: Marli Teixeira de Almeida Minhoni / Coorientador: Edson Luiz Furtado / Banca: Celso Garcia Auer / Banca: Elias Taylor Durgante Severo / Mestre
27

Evaluation of the Nutritional Requirement and Wood Decay Properties of a Termite Mushroom, Termitomyces eurrhizus / オオシロアリタケの栄養要求性と木材腐朽特性の評価

Ono, Kazuko 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20421号 / 農博第2206号 / 新制||農||1047(附属図書館) / 学位論文||H29||N5042(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 吉村 剛, 教授 梅澤 俊明, 教授 本田 与一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
28

Molecular Approaches For Characterization Of Biodegradation Genes Expressed During Microbial Colonization On Decay-Resistant And Non-Resistant Woods In Forest Soil

Kang, Youngmin 01 May 2010 (has links)
White and brown-rot fungi damage wood by production of enzymes that attack the structural components. The objective of this study was to characterize decay related genes and proteins that are expressed on three different wood types undergoing decay over 18 months. Variation in gene expression, presence of decay enzymes and proteins were determined for untreated pine (non-resistant), western red cedar (naturally durable), and alkaline copper quaternary (ACQ) treated pine (chemically resistant) exposed in a soil decay bed test. Decay was assessed by visual decay ratings, dynamic modulus of elasticity (MOE), and microscopy. There were no significant differences in decay between cedar and ACQ-treated pine over the 18 month period. However, there were significant differences in decay between pine and cedar and between pine and ACQtreated pine. The fungal mycelia penetrated the cell walls of pine and were continually observed over 18 months, but were not observed in cedar or ACQ-treated pine. Basidiomycetes containing decay genes lignin peroxidase (Lip), manganese peroxidase (Mnp), and laccase (Lcc) were detected on pine and ACQ-treated pine which also a greater diversity of fungi had compared to cedar. Phlebia radiata specific-lignin peroxidase and manganese peroxidase genes were expressed approximately equally on pine and ACQ-treated pine at most sampling times. The expression of P. radiata specific Lcc was higher on ACQ-treated pine than untreated pine. No basidiomycete genes were expressed and only a few basidiomycetes were identified on cedar, which also showed little decay. ACQ-treated pine also showed little decay, however basidiomycetes were present and active. Proteins were first detected on pine and ACQ-treated pine at 6 months and continued to increase through 18 months, but were not detected on cedar until 14 months exposure. There were greater numbers of total proteins on pine than on cedar and ACQ-treated pine at each time period. Decay genes were only found on pine but not on cedar and ACQ-treated pine. Additionally, the types of proteins and their score were different among the three wood types. From these results, the natural durability of cedar reduced the wood decay community and its activities. It appears that ACQ-treated wood did not stop the production of the decay enzymes but the chemical treatment did inhibit the effectiveness of the wood decay genes.
29

An integrated subterranean termite management system coupling soil amendments with insect repellent plant tissues

Kitchens, Shane Clinton 03 May 2008 (has links)
Currently, soil termiticides are the primary termite defense mechanism used under and around living spaces in the continental United States. While this form of treatment has been effective for many years, the creation of a new, more environmentally friendly termite management system could reduce the amount of termiticides introduced annually into the environment around structures. A natural barrier containing soil amendments and mulches amended with insect-repellent plant tissues discourages termite foraging and directs the termites away from the structure. The proposed integrated management system developed during this project, divides a structure into three zones. Each zone has particular responsibilities to the overall biological durability of the structure. This study concentrates on the inner-detritus zone, which extends 24” (0.61m) from the outer wall of the structure, an area that can harbor potential hazards such as moisture traps, conducive termite food, water and protection sources, and other factors that could put undue biological pressures on the structure. Altering this zone, more specifically the pH of the soil and the mixture of products used as mulch, creates an environment unsuitable for termite foraging. This integration of several termite repelling strategies should obviate or significantly reduce the need for termiticidal soil barriers under and around houses.
30

Carbon and Nutrient Dynamics of Downed Woody Debris in a Northern Hardwood Forest

Rudz, Philip 10 December 2013 (has links)
Downed woody debris (DWD) is a carbon-rich form of forest litter and plays a unique role in carbon and nutrient cycling. I present a novel modeling approach describing DWD decomposition and nutrient storage in a managed northern hardwood forest. The predicted half-life of DWD carbon was 7 years, less than previously observed in similar northern hardwood forests. A stage-based nutrient model indicated that harvest slash DWD was a net nitrogen and phosphorus sink for eight years following harvest and accumulated calcium during decay. Field observations of respiration and leaching supported model results with a respired C half-life of 8 years, while leached carbon export constituted 1.37% of the respired flux. DWD leachate carbon and nitrogen concentrations were 11× and 2× greater than from litter, respectively, and DWD leachate contributed disproportionately to soil C stocks. This work represents an expedient means of forecasting DWD abundance and partitioning carbon flux from DWD.

Page generated in 0.0514 seconds