Spelling suggestions: "subject:"corking fluid"" "subject:"corking tluid""
1 |
An experimental investigation of liquid metal MHPsPalkar, Ashish Yudhishthir, Harris, Daniel K. January 2007 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references.
|
2 |
Providing flow parameters for approximate die design models and the improvement and verification of those models using CFD analysis /Livelli, Mark Andrew. January 2010 (has links)
Typescript. Includes bibliographical references (leaves 124-126).
|
3 |
Fabrication, filling, sealing and testing of micro heat pipesNadgauda, Omkar Satish, Harris, Daniel K. January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references.
|
4 |
The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recoveryDyuisenakhmetov, Aibolat 05 1900 (has links)
Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.
|
5 |
CHARACTERIZATION, MODELING AND DESIGN OF ULTRA-THIN VAPOR CHAMBER HEAT SPREADERS UNDER STEADY-STATE AND TRANSIENT CONDITIONSGaurav Patankar (5930123) 10 June 2019 (has links)
This dissertation is focused on studying transport behavior in vapor chambers at ultra-thin form factors so that their use as heat spreaders can be extended to applications with extreme space constraints. Both the steady-state and transient thermal transport behaviors of vapor chambers are studied. The steady-state section presents an experimental characterization technique, methodologies for the design of the vapor chamber wick structure, and a working fluid selection procedure. The transient section develops a low-cost, 3D, transient semi-analytical transport model, which is used to explore the transient thermal behavior of thin vapor chambers: 1) The key mechanisms governing the transient behavior are identified and experimentally validated; 2) the transient performance of a vapor chamber relative to a copper heat spreader of the same external dimensions is explored and key performance thresholds are identified; and 3) practices are developed for the design of vapor chambers under transient conditions. These analyses have been tailored to ultra-thin vapor chamber geometries, focusing on the application of heat spreading in mobile electronic devices. Compared to the conventional scenarios of use for vapor chambers, this application is uniquely characterized by compact spaces, low and transient heat input, and heat rejection via natural convection.
|
6 |
Advanced power cycles with mixture as the working fluidJonsson, Maria January 2003 (has links)
The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery. This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output. A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation. <b>Keywords:</b>power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy
|
7 |
Advanced power cycles with mixture as the working fluidJonsson, Maria January 2003 (has links)
<p>The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery.</p><p>This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output.</p><p>A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation.</p><p><b>Keywords:</b>power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy</p>
|
8 |
Nouvelle génération de transformateurs de chaleur, sélection de fluides de travail et optimisation des équipements du cycle en employant des technologies innovantes / New generation of Absorption Heat Transformers, selection of suitable fluid mixtures and optimization of the cycle’s components using innovative technologiesKhadra, Rami 17 December 2015 (has links)
Ce travail contribue aux efforts de l'Union Européenne pour réduire les émissions de CO2. Son objectif est d'aider les industries produisant de la chaleur fatale à récupérer cette énergie perdue, d'augmenter sa température et de la réutiliser in situ. Les transformateurs de chaleur (Absorption Heat Transformers ou AHT), machines à absorption consommant très peu d'électricité, sont alors ici étudiés. Les AHTs existants rencontrent des problèmes comme la corrosion, la cristallisation, la toxicité et les niveaux de pression éloignés de la pression atmosphérique. Ceux-ci sont causés par les fluides conventionnels (Eau/LiBr et Ammoniaque/Eau) et s'aggravent à des températures supérieures à 120°C. Des modèles de conception ainsi que des solutions techniques, applicables avec tous mélanges de fluides organiques, sont alors proposés dans cette thèse. Ces modèles sont validés avec des données de la littérature et implémentés dans des outils d'aide à la décision.Tout d'abord, un modèle de sélection de paires de fluides organiques (parmi une liste de fluides) est développé. Les contraintes prises en compte sont, entre autres, les types et les profils de températures des sources et puits de chaleur, et les propriétés du fluide. Pour chaque type de fluide, la méthode la plus adaptée au calcul des propriétés physiques des fluides est choisie.En second lieu, pour effectuer la séparation des 2 constituants du mélange de fluides organiques, le générateur (composant recevant la chaleur fatale) et le condenseur de l'AHT sont fusionnés pour former une colonne de distillation. Un modèle d'une colonne de distillation nommée « hybride » est alors développé en adaptant la méthode de Ponchon-Savarit et en la combinant avec la méthode ETD (Equal Thermodynamic Distance). Cette colonne associe les avantages des 2 types de colonnes adiabatiques et diabatiques. Elle allie réduction de production d'entropie et meilleure exploitation des sources de chaleur à températures glissantes. La conception mécanique de la colonne hybride est aussi incluse.Troisièmement, pour atteindre la température théorique maximale du mélange de fluide déjà choisi, l'absorbeur de l'AHT (où la chaleur à haute température est libérée) est divisé en sections adiabatiques suivies par des sections diabatiques. De plus, les modèles détaillés des colonnes à bulles (fonctionnant en co-courant ou en contre-courant) ainsi que de la colonne à garnissage sont présentés et comparés entre eux.Les principaux résultats de ces travaux consistent en une nouvelle méthodologie de choix de fluides organiques pouvant remplacer les mélanges classiques surtout à températures élevées (supérieures à 130 °C). En ce qui concerne la colonne de distillation, il est montré que la colonne adiabatique constitue un meilleur choix lorsqu'une source de chaleur latente est disponible tandis qu'avec une source de chaleur sensible, la colonne hybride engendre moins de pertes exergétiques. En passant à l'absorbeur, le nouveau mode d'opération de celui-ci permet à l'utilisateur d'atteindre des températures plus élevées que celles réalisées avec les technologies actuellement disponibles. Enfin, les modèles développés permettent de choisir les technologies de distillation (adiabatique, diabatique ou hybride) et d'absorption (colonne à bulles ou à garnissage) les plus appropriées en s'adaptant à différentes problématiques industrielles. / This work is part of the European union efforts to reduce its CO2 emissions. It aims to assist any waste heat producing industry in recuperating this lost thermal energy, pumping it to higher temperature levels and reusing it on site. Absorption Heat Transformers (AHT), that consume little electricity, are used for this task. Current AHT problems such as corrosion, crystallization, toxicity and inconvenient pressure levels are caused by conventionally used H2O/LiBr and NH3/ H2O working fluids and get worse at temperatures exceeding 120°C. Potential solutions are thus suggested. According to them, models are developed; they are all able to operate with any organic mixture and are customized to accompany the industrialist from start to finish. These solutions were validated by comparing them with literature data and are implemented into several tools.Firstly, a model selects the optimal organic binary mixture -among a list of fluids- in terms of the real case application's constraints: Heat transfer fluids used, Heat source's and heat sink's types and temperature profiles, mixtures transport properties among other parameters. Suitable thermodynamic model is selected for different fluid group types.Secondly, in order to separate the 2 components of the chosen mixture of organic compounds, the AHT generator (component which receives waste heat) is merged with the AHT condenser thus forming a distillation column. A “hybrid column” is designed by modifying the Ponchon-Savarit method and combining it with the Equal Thermodynamic Distance (ETD) method. This new column associates the best features of the two columns. It reduces entropy production rates and best exploits temperature gliding heat sources. Mechanical design for the hybrid column is also included.Thirdly, to ensure that the maximum theoretical temperature of the working fluid is reached, the AHT absorber (where high temperature heat is released) is divided into consecutive adiabatic parts followed by diabatic ones. Detailed Models for co-current and counter-current bubble columns as well as packing columns are presented and compared.Main results consist in a selection methodology of organic compounds mixtures, capable of replacing conventional ones specially at temperatures higher than 130 °C. It's also shown that adiabatic columns are better options when latent type heat sources are available while hybrid columns lose less exergy when used with sensible heat sources. As for the absorber, the new operating mode provides the user with higher temperatures than currently reached by available technologies. Finally, using the developed models, tailored and most suitable distillation (adiabatic, diabatic or hybrid columns) and absorber (bubble or packing columns) technologies can be proposed depending on the industrial specific cases and requirements.
|
9 |
Modélisation, conception et étude expérimentale d’une pompe à chaleur industrielle à eau à haute température / Modeling, design and experimental study of an industrial high temperature heat pump using water as refrigerantChamoun, Marwan 11 December 2012 (has links)
Le contexte énergétique global impose, durablement aux industriels la poursuite des efforts en matière d’efficacité énergétique nécessitant le déploiement de nouveaux procédés innovants éco-efficaces. Une meilleure gestion de l’énergie permet l’amélioration de l’efficacité énergétique globale des procédés ainsi que la réduction des émissions de CO2. Dans ces conditions, la récupération et la valorisation de la chaleur perdue apparait comme un potentiel pour atteindre ces objectifs. L’intégration d’une pompe à chaleur à haute température permet une valorisation de pertes calorifiques en satisfaisant des besoins de chauffage à haute température (>130°C) qui apparaissent simultanément dans certains procédés (distillation, séchage…). Malheureusement, les pompes à chaleur répondant à ces besoins industriels sont indisponibles actuellement. C’est dans ce contexte que s’inscrit la présente étude qui a permis le développement et la mise en place d’une pompe à chaleur à haute température utilisant l’eau comme fluide frigorigène. Les verrous techniques et technologiques limitant la faisabilité d’une telle machine ont été levés en concevant une nouvelle architecture de PAC et en développant deux types de compresseur : un compresseur bi-vis adapté et un compresseur centrifuge bi-étagé à paliers magnétiques. La mise en place de cette PAC munie du compresseur bi-vis est présentée. Un modèle dynamique de cette pompe à chaleur est développé avec Modelica en tenant compte de la présence de gaz incondensables dans la machine. Des modèles détaillés des compresseurs sont développés en fonction de leurs caractéristiques géométriques. Une étude expérimentale de la phase de démarrage est présentée montrant le processus de purge des incondensables et l'évolution de certains paramètres de la pompe à chaleur. Ces résultats expérimentaux ont été confrontés à des simulations numériques. Plusieurs modes de fonctionnement de la machine de récupération des pertes calorifiques sont simulés numériquement et analysés énergétiquement ainsi qu’exergétiquement. Le modèle de pompe à chaleur a enfin été intégré à un modèle de colonne à distiller montrant les économies d'énergie globales et les avantages environnementaux obtenus. / Currently, improving energy efficiency becomes a main challenge for all industrial energy systems. This challenge involves an improved recovery of wasted heat generated by several industrial processes. Large energy savings and potential environmental benefits are associated with the use of industrial heat pump mainly at high temperature levels (>130°C) unavailable on the market. The development of high temperature heat pump using water vapor as working fluid is investigated. Technical problems restraining the feasibility of this industrial heat pump are surmounted by a specifically designed heat pump, the development of a new twin screw compressor and a new centrifugal compressor with magnetic bearings. A dynamic model of this heat pump is developed using Modelica and taking into account the presence of non-condensable gases in the machine. Detailed models of the compressors are developed based on their geometrical characteristics. Experimental results of the start-up phase have been presented showing the non-condensable purging process and the evolution of some parameters of the heat pump. These experimental results have been confronted to numerical simulations. Several scenarios of industrial processes for high-temperature heat recovery and heat upgrading are numerically simulated and analyzed based on energetic and exergetic studies. The heat pump model has been integrated to a distillation column showing the global energy savings and the environmental benefits of using this developed heat pump.
|
10 |
Analysis of Compressible and Incompressible Flows Through See-through Labyrinth SealsWoo, Jeng Won 2011 May 1900 (has links)
The labyrinth seal is a non-contact annular type sealing device used to reduce the internal leakage of the working fluid which is caused by the pressure difference between each stage in a turbomachine. Reducing the leakage mass flow rate of the working fluid through the labyrinth seal is desirable because it improves the efficiency of the turbomachine.
The carry-over coefficient, based on the divergence angle of the jet, changed with flow parameters with fixed seal geometry while earlier models expressed the carry-over coefficient solely as a function of seal geometry. For both compressible and incompressible flows, the Reynolds number based on clearance was the only flow parameter which could influence the carry-over coefficient. In the case of incompressible flow based on the simulations for various seal geometries and operating conditions, for a given Reynolds number, the carry-over coefficient strongly depended on radial clearance to tooth width ratio. Moreover, in general, the lower the Reynolds number, the larger is the divergence angle of the jet and this results in a smaller carry-over coefficient at lower Reynolds numbers. However, during transition from laminar to turbulent, the carry-over coefficient reduced initially and once the Reynolds number attained a critical value, the carry-over coefficient increased again. In the case of compressible flow, the carry-over coefficient had been slightly increased if radial clearance to tooth width ratio and radial clearance to tooth pitch ratio were increased. Further, the carry-over coefficient did not considerably change if only radial clearance to tooth width ratio was decreased. The discharge coefficient for compressible and incompressible flows depended only on the Reynolds number based on clearance.
The discharge coefficient of the tooth in a single cavity labyrinth seal was equivalent to that in a multiple tooth labyrinth seal indicating that flow downstream had negligible effect on the discharge coefficient. In particular, for compressible fluid under certain flow and seal geometric conditions, the discharge coefficient did not increase with an increase in the Reynolds number. It was correlated to the pressure ratio, Pr. Moreover, it was also related to the fact that the flow of the fluid through the constriction became compressible and the flow eventually became choked.
At low pressure ratios (less than 0.7), Saikishan’s incompressible model deviated from CFD simulation results. Hence, the effects of compressibility became significant and both the carry-over coefficient compressibility factor and the discharge coefficient compressibility factor needed to be considered and included into the leakage model.
The carry-over coefficient compressibility factor, phi, had two linear relationships with positive and negative slopes regarding the pressure ratios. This result was not associated with the seal geometry because the seal geometry ratios for each instance were located within the nearly same ranges. Further, the phi-Pr relationship was independent of the number of teeth regardless of single and multiple cavity labyrinth seals.
The discharge coefficient compressibility factor, psi, was a linear relationship with pressure ratios across the tooth as Saikishan predicted. However, in certain flow and seal geometric conditions, Saikishan’s model needed to be modified for the deviation appearing when the pressure ratios were decreased. Hence, a modified psi-Pr relationship including Saikishan’s model was presented in order to compensate for the deviation between the simulations and his model.
|
Page generated in 0.0581 seconds