Spelling suggestions: "subject:"brought"" "subject:"drought""
21 |
Füge- und Übertragungsverhalten torsionsbelasteter Stahl-Aluminium-Rändelpressverbindungen / Joining and transmission behaviour of torsional stressed steel-aluminum knurled interference fitsLätzer, Michael 15 June 2016 (has links) (PDF)
Die vorliegende Dissertation beschäftigt sich mit analytischen, numerischen und experimentellen Grundlagenuntersuchungen zum Füge- und zum Übertragungsverhalten einer reibformschlüssigen Stahl-Aluminium-Rändelpressverbindung. Die Besonderheit dieser Verbindung besteht darin, dass eine mit einer Rändelung und Übermaß versehene harte Stahlwelle in eine weiche Aluminiumnabe mit kreisrunder Bohrung längseingepresst wird. Die maßgebende Größe für den Fügevorgang ist der Fasenwinkel der Welle φ. Der Nabenwerkstoff wird hierbei in Abhängigkeit des Fasenwinkels der Welle φ umgeformt beziehungsweise herausgeschnitten. Mit Hilfe der relativen Festigkeit R F , welche das Verhältnis von maximaler Lösekraft F l, max zu maximaler Fügekraft F f, max repräsentiert, wurde ein Gütekennwert zur gezielten Auswahl von Stahl-Aluminium-Rändelpressverbindungen hinsichtlich der axialen Übertragungsfähigkeit abgeleitet.
Die Charakterisierung der experimentell ermittelten Torsionsmoment - Verdrehwinkel - Kurven ergab zur Auslegung die Bereiche Auslegungs- und Versagenskriterium. Das maximal übertragbare Torsionsmoment wird beim sogenannten Versagenskriterium τ S durch das Abscheren der Rändel in der Nabe erreicht. In Analogie zum Füge- und zum Löseverhalten zeigt sich der positive Einfluss des Fasenwinkels φ auf das übertragbare Torsionsmoment. So können formend gefügte Stahl-Aluminium- Rändelpressverbindungen ein um bis zu ca. 40% größeres statisches Torsionsmoment als vergleichbare schneidend gefügte Rändelpressverbindungen übertragen.
Das mechanisch-physikalische Berechnungsmodell zur Berechnung des statisch übertragbarenTorsionsmomentes basiert auf der Kerbzahnverbindung. Damit kann das Torsionsmoment am Auslegungskriterium T pF sowie das maximal übertragbare Torsionsmoment bei Abscherung Tτ S ermittelt werden. Die Berücksichtigung des formenden beziehungsweise schneidenden Fügevorgangs wird in Abhängigkeit des Fasenwinkels φ mit Hilfe des sogenannten winkelbasierten Umformgrades ε plRPV beschrieben. / The present thesis provides analytical, numerical and experimental fundamental studies for the joining behaviour and the transmission behaviour of a friction and form closure steel-aluminum knurled interference fit. The special feature of this connection is a knurled and oversize hard steel shaft, longitudinally pressed in a soft aluminum hub with a circular bore. The most important parameter for the joining process is the shaft chamfer angle φ. Due to the shaft chamfer angle φ the material of the hub will be formed or cutted during the joining process. By using the relative strength, the quotient of push out force and joining force who describes the joint strength, a first quality parameter for a precise selection of steel-aluminum knurled interference fit has been derived.
The description of the experimentally determined torque - twisting angle – curves has shown areas of design criterion and mechanical breakdown. The maximum transmittable torque is achieved by reaching the shearing stress of the knurls in the hub - mechanical breakdown τ S. Similar to the joining and the push out behaviour, the positive influence of the shaft chamfer angle φ is also shown at the transmittable torque. Furthermore, knurled interference fits joined by forming can transmit higher torques of about 40% than interference fits joined by cutting due to the material hardening. The mechanical-physical model for calculating the static transmittable torque is based on the serration connection. Thus, the torque at the design criterion and the maximum transmittable torque at the mechanical breakdown can be found. The consideration of the forming or cutting joining process is described as a function of the shaft chamfer angle φ using the so-called angle-based plastic strain ε plRPV.
|
22 |
Evolution Of Texture And Its Correlation With Microstructure And Mechanical Property Anisotropy In AA7010 Aluminum AlloyMondal, Chandan 07 1900 (has links) (PDF)
Al-Zn-Mg-Cu-Zr based AA7010 aluminum alloy belongs to the class of heat treatable alloys and the semi-finished products are generally produced by hot rolling, forging or extrusion processes. It is well known that the thermo-mechanical processing parameters strongly influence both the evolution of texture as well as microstructure in the material. As a result, the semi-finished products exhibit anisotropy in mechanical properties causing legitimate concerns on the applicability of the alloys. In the present thesis, a systematic study on the evolution of texture and microstructure and its implications on the mechanical properties anisotropy of AA7010 alloy has been attempted.
A brief introduction on the development of texture and its influence on the anisotropy of the mechanical properties of 7xxx series aluminum alloys is presented first with a view to explore the scopes for further investigation. An overview of the relevant literature is described subsequently. The development of texture and microstructure in an Al-Zn-Mg-Cu-Zr based 7010 aluminum alloy during uneven, hot cross-rolling is presented. Materials processing involves three different types of uneven cross-rolling. The variations in relative intensity of the β-fibre components as a function of cross rolling modes have been investigated. It has been shown that the main attributes to the texture evolution in the present study are (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component following each successive pass, (b) recrystallization resistance of Bs oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids. The stability of the unique single, rotated Brass-{110}(556) component developed in the present alloy, during long term thermal annealing and cold rolling deformation has been systematically investigated further.
Subsequently, the influence of development of microstructure and texture on the in-plane anisotropy (AIP) of yield strength, work hardening behavior and yield locus anisotropy has been presented. The AIP and work hardening behavior are evaluated by tensile testing at 0o, 45o and 90o to the rolling direction, whilst yield loci have been generated by Knoop hardness method. It has been observed that in spite of having strong rotated Brass texture, the specimens show low AIP especially in peak aged temper. The in-plane anisotropy (AIP) of yield strength, and work hardening behavior of a heat treated 7010 aluminum alloy sheet having strong, rotated Brass-{110}556 component with different texture intensity and volume fraction of recrystallization has been further evaluated. It is observed that the AIP increases with increase in texture intensity and volume fraction of recrystallization.
In the subsequent chapter, the tensile flow and work hardening behavior are described using constitutive equations. Room temperature tensile properties have been evaluated as a function of tensile axis orientations in as-hot rolled as well as peak aged conditions. It has been found that both the Ludwigson and a generalized Voce-Bergström relation adequately describe the tensile flow behavior in all conditions compared to the Hollomon relation. The Voce-Bergström parameters define the slope of - plots in the stage-III regime when the specimens show a classical linear decrease in hardening. Further analysis of work hardening behavior throws light on the effect of texture on the dislocation storage and dynamic recovery.
An overall summary of the experimental results and the scopes for future studies have been presented at the end.
|
23 |
Füge- und Übertragungsverhalten torsionsbelasteter Stahl-Aluminium-RändelpressverbindungenLätzer, Michael 20 November 2015 (has links)
Die vorliegende Dissertation beschäftigt sich mit analytischen, numerischen und experimentellen Grundlagenuntersuchungen zum Füge- und zum Übertragungsverhalten einer reibformschlüssigen Stahl-Aluminium-Rändelpressverbindung. Die Besonderheit dieser Verbindung besteht darin, dass eine mit einer Rändelung und Übermaß versehene harte Stahlwelle in eine weiche Aluminiumnabe mit kreisrunder Bohrung längseingepresst wird. Die maßgebende Größe für den Fügevorgang ist der Fasenwinkel der Welle φ. Der Nabenwerkstoff wird hierbei in Abhängigkeit des Fasenwinkels der Welle φ umgeformt beziehungsweise herausgeschnitten. Mit Hilfe der relativen Festigkeit R F , welche das Verhältnis von maximaler Lösekraft F l, max zu maximaler Fügekraft F f, max repräsentiert, wurde ein Gütekennwert zur gezielten Auswahl von Stahl-Aluminium-Rändelpressverbindungen hinsichtlich der axialen Übertragungsfähigkeit abgeleitet.
Die Charakterisierung der experimentell ermittelten Torsionsmoment - Verdrehwinkel - Kurven ergab zur Auslegung die Bereiche Auslegungs- und Versagenskriterium. Das maximal übertragbare Torsionsmoment wird beim sogenannten Versagenskriterium τ S durch das Abscheren der Rändel in der Nabe erreicht. In Analogie zum Füge- und zum Löseverhalten zeigt sich der positive Einfluss des Fasenwinkels φ auf das übertragbare Torsionsmoment. So können formend gefügte Stahl-Aluminium- Rändelpressverbindungen ein um bis zu ca. 40% größeres statisches Torsionsmoment als vergleichbare schneidend gefügte Rändelpressverbindungen übertragen.
Das mechanisch-physikalische Berechnungsmodell zur Berechnung des statisch übertragbarenTorsionsmomentes basiert auf der Kerbzahnverbindung. Damit kann das Torsionsmoment am Auslegungskriterium T pF sowie das maximal übertragbare Torsionsmoment bei Abscherung Tτ S ermittelt werden. Die Berücksichtigung des formenden beziehungsweise schneidenden Fügevorgangs wird in Abhängigkeit des Fasenwinkels φ mit Hilfe des sogenannten winkelbasierten Umformgrades ε plRPV beschrieben. / The present thesis provides analytical, numerical and experimental fundamental studies for the joining behaviour and the transmission behaviour of a friction and form closure steel-aluminum knurled interference fit. The special feature of this connection is a knurled and oversize hard steel shaft, longitudinally pressed in a soft aluminum hub with a circular bore. The most important parameter for the joining process is the shaft chamfer angle φ. Due to the shaft chamfer angle φ the material of the hub will be formed or cutted during the joining process. By using the relative strength, the quotient of push out force and joining force who describes the joint strength, a first quality parameter for a precise selection of steel-aluminum knurled interference fit has been derived.
The description of the experimentally determined torque - twisting angle – curves has shown areas of design criterion and mechanical breakdown. The maximum transmittable torque is achieved by reaching the shearing stress of the knurls in the hub - mechanical breakdown τ S. Similar to the joining and the push out behaviour, the positive influence of the shaft chamfer angle φ is also shown at the transmittable torque. Furthermore, knurled interference fits joined by forming can transmit higher torques of about 40% than interference fits joined by cutting due to the material hardening. The mechanical-physical model for calculating the static transmittable torque is based on the serration connection. Thus, the torque at the design criterion and the maximum transmittable torque at the mechanical breakdown can be found. The consideration of the forming or cutting joining process is described as a function of the shaft chamfer angle φ using the so-called angle-based plastic strain ε plRPV.
|
Page generated in 0.0214 seconds