• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 419
  • 346
  • 128
  • 31
  • 26
  • 22
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 1554
  • 1554
  • 1554
  • 339
  • 337
  • 300
  • 287
  • 246
  • 237
  • 234
  • 220
  • 190
  • 162
  • 133
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Coherency strain and a new yield criterion. : 'the Frogley conjecture'

Jayaweera, Nicholas Benjamin January 2000 (has links)
No description available.
432

Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

Norris, Andrew George January 2000 (has links)
No description available.
433

Magnetic properties of rare earth superlattices

Wilkins, Caroline Jane Theresa January 2001 (has links)
No description available.
434

Fulleride salts : from polymers to superconductors

Margadonna, Sarena January 2000 (has links)
No description available.
435

Short range order and phase separation in Ti-rich Ti-Al alloys

Liew, H. J. January 1999 (has links)
No description available.
436

Structural and thermogravimetric studies of alkali metal amides and imides

Lowton, Rebecca L. January 1999 (has links)
This work presents an in-depth study of the crystal structures and hydrogen sorption potential of the Li - N - H and Li - Na - N - H systems. The structures of the materials have been studied using X-ray and neutron diffraction, Raman spectroscopy and inelastic neutron scattering. The behavior of the materials during heating was studied using variable temperature X-ray diffraction, intelligent gravimetric analysis in conjunction with neutron diffraction, intelligent gravimetric analysis combined with mass spectrometry and differential scanning calorimetry. The role of cation disorder in the Li - N - H (D) system has been explored, indicating that crystallographic ordering of the Li<sup>+</sup> ions within lithium amide and lithium imide significantly affects the hydrogen sorption properties of the materials. Order-disorder transitions were observed both during hydrogen desorption from ordered LiNH<sub>2</sub> and during deuterium adsorption on ordered Li<sub>2</sub>ND. Such transitions were not observed in disordered samples of the materials. The intrinsic disorder and the stoichiometry of Li - N - H(D) materials was shown to depend strongly on the techniques used during their synthesis. Studies regarding the synthesis, crystal chemistry and decomposition properties of the mixed Li / Na amides are presented. Two distinct mixed Li / Na amides of formulae Li<sub>3</sub>Na(NH<sub>2</sub>)<sub>4</sub> and LiNa<sub>2</sub>(NH<sub>2</sub>)<sub>3</sub> were observed in the LiNH<sub>2</sub> / NaNH<sub>2</sub> phase space. Na was also seen to be soluble in LiNH<sub>2</sub>, forming sodium-doped LiNH<sub>2</sub> . Li<sub>3</sub>Na(NH<sub>2</sub>)<sub>4</sub> and Na-doped LiNH<sub>2</sub> were found to exhibit significant cation non-stoichiometry, whereas LiNa<sub>2</sub>(NH<sub>2</sub>)<sub>4</sub> was shown to exist as a line phase material. Thermogravimetric and calorimetric studies of the mixed Li / Na amides suggested that these materials decompose primarily with loss of H<sub>2</sub>.
437

The microdistribution of urea formaldehyde resin in particleboard, and its significance

Beele, P. M. January 1983 (has links)
No description available.
438

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Conrad, Heidi A. 12 1900 (has links)
The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH &#8805; 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
439

Influence de l'orientation cristalline sur les microstructures de déformation et l'adoucissement d'alliages Al-Mn / Influence of the crystalline orientation on deformation microstructure and softening in Al-Mn alloys.

Albou, Adeline 16 December 2010 (has links)
L’objectif de ma thèse consiste en l’étude de l’influence de l’orientation cristalline sur les microstructures de déformation et l’adoucissement (restauration, germination de la recristallisation) d’alliages Al-Mn.Les évolutions microstructurales de monocristaux d’orientation Laiton, Goss et S déformés en compression plane (0,15<ε<2,1) ont tout d’abord été caractérisées par la technique EBSD couplée à un MEB-FEG. Aux petites déformations, les microbandes s’alignent principalement sur les plans de cission maximale (indépendamment de l’orientation cristalline) ; alors qu’à des déformations plus importantes, elles s’alignent majoritairement sur les systèmes de glissement activés. Une structure lamellaire apparaît aux grandes déformations.Ensuite, les mécanismes de la restauration (à 240-320°C) dans ces mêmes monocristaux déformés (ε=2,1) ont été caractérisés par microdureté Vickers, par EBSD et par analyses des profils des pics de diffraction RX. La cinétique de restauration des monocristaux Laiton est systématiquement plus lente que celle des monocristaux Goss et S. L’influence de l’orientation serait alors attribuée aux faibles désorientations développées au cours de la déformation plastique pour les monocristaux Laiton (moyenne autour de 4°) comparativement à celles des monocristaux Goss et S (autour de 7-8°).Enfin, nous avons étudié l’adoucissement dans un polycristal déformé par une corrélation directe de la microstructure avant et après recuit. Deux principaux types de fragments Cube ont été mis en évidence dans l’état déformé. Seuls les fragments Cube « intergranulaires » permettent le développement rapide de grains Cube recristallisés. / The aim of my tesis was to evaluate the influence of crystalline orientation in deformation microstructures and softening (recovery, recrystallization) in cold-rolled Al-Mn alloys.The deformation microstructures of Al–Mn single crystals (namely Brass, Goss and S) have been characterized after channel-die compression up to true strains of 2.1 by EBSD in a FEG-SEM. There is a general tendency for the microbands to be non-crystallographic at low strains, then crystallographic, and finally mixed at high strains with some lamellar banding.The recovery behaviour (at 240-320°C) of the cold-rolled Al-0.1%Mn crystals (ε=2.1) was investigated by Vickers microhardness, EBSD and X-ray line broadening analysis. The microhardness recovery rates of the Brass oriented crystals are systematically lower than those of the Goss and S orientations. We thus suggest that the orientation dependency is ascribed to the relatively low misorientations developed by plastic straining in the Brass crystals (average about 4°) compared with the Goss and S orientations (about 7-8°).Finally, softening investigations in strongly deformed Al-0.1%Mn polycrystals were carried out to correlate the deformation microstructure with the cube recrystallization nucleation. Two major types of thin cube bands have been identified. Only the “intergranular” cube segments (usually between different S and Cu oriented grains) led to the formation of high growth rate recrystallized cube grains. The “transgranular” cube bands did not lead to a growth advantage for the cube components compared to components of the surrounding matrix.
440

Determining structure and atomic properties of materials using resonant X-ray diffraction

Sutton, Karim J. January 2015 (has links)
X-ray crystallography is a widely used analytical technique for the structure solution of small molecules. Since the determination of the rock salt structure in 1913 by Henry and Lawrence Bragg the technique has developed allowing the solution of larger and more complex structures. The information that can be determined about these structures has increased as X-ray sources, detectors, and computational methods have improved. However, certain properties of molecules cannot always be directly determined from single wavelength X-ray diffraction. These include, inter alia: the site specific oxidation or spin state of an element in compounds where more than one state of the same element exist; discrimination between consecutive heavy elements in the periodic table. As the size of molecules being studied increases, reduced data resolution also becomes a problem. The aim of this research was to determine whether these problems can be addressed by measuring the changing anomalous scattering contribution of heavy atoms within structure through careful selection of the X-ray energy. Firstly, I report an investigation into the problemof discriminating oxidation state, spin state and elements of near identical scattering by exploiting their anomalous signal. I first present DetOx, a program written during the course of the project to deconvolute the fluorescence signal from materials containing more than one state of the same element into their respective spectra. This allows the calculation of anomalous scattering factors for both atomic states of an atom, which can subsequently be used to refine the occupancy of the different states at ambiguous sites within the crystal structure. The approach taken here, to determine differences due to relatively small anomalous signals, is analogous to the refinement of the Flack parameter whereby small changes in many hundreds or thousands of observations can be used to fit a parameter with a high degree of precision and accuracy. I show the application of this technique to the mixed oxidation state compound, GaCl<sub>2</sub>, and the two-step spin crossover material, Fe(btr)<sub>3</sub>(ClO<sub>4</sub>)<sub>2</sub>. Refinement of the occupancy of charged ions on multiple sites using data at a single, carefully selected wavelength proved successful for these compounds, although upon extension to materials containing a larger number of anomalous scatterers, the absorption became a major issue in the data along with problems associated with simultaneously refining occupancies at more sites in the structure. We have demonstrated that calculations can be made to select specific experimental data to collect in order to improve the measured signal. However, due to limitation of the current collision model on the diffractometer used we have not yet been able to construct data collection strategies to take advantage of this. I next present a new ratio refinement technique to overcome this absorption problem due to the increased number of scatterers. By using ratios between datasets close in energy, but below the absorption edge, we were able to exploit small changes in f' without encountering absorption problems associated with the increase in f''. These ratio values were then refined against a lab structure using a modified version of CRYSTALS to reveal the site specific occupancies of different atomic species within a given structure. For mixed-valence compounds, e.g. Mn<sub>3</sub> and Mn<sub>6</sub> clusters, the difference in anomalous signal between the different states proved too small for a stable least-squares refinement solution. However, we have shown that using a simulated annealing algorithm (to refine only occupancies), we can consistently obtain the expected structure. For mixed-metal structures e.g. the Mn<sub>5</sub>Co<sub>4</sub> cluster, there was enough contrast in the data to refine occupancies with a least-squares approach, and these results were supported using simulated annealing. Lastly, I describe the application of structure solution techniques based on methods used in macromolecular crystallography to 'large' small molecules. Traditionally these have been reserved for non-centrosymmetric protein structures, however with the trend of synthesising larger and larger small molecules, problems encountered in macromolecular crystallography leading to low resolution datasets are becoming increasingly common. I have shown that it is possible to solve the structure of centrosymmetric structures by exploiting the anomalous signal in multiple wavelength diffraction experiments. The technique is applied successfully to two relatively small molecules, however the results are promising for moving to larger structures in the future.

Page generated in 0.0857 seconds