Spelling suggestions: "subject:"array absorption.in structure"" "subject:"array absorptionin structure""
31 |
Structure and Ozone Decomposition Reactivity of Supported Manganese Oxide CatalystsRadhakrishnan, Rakesh 26 January 2001 (has links)
Manganese oxide catalysts supported on Al₂O₃, ZrO₂, TiO₂ and SiO₂ supports were used to study the effect of support on ozone decomposition kinetics. X-ray diffraction (XRD), in-situ laser Raman spectroscopy, temperature programmed oxygen desorption, surface area measurements, extended and near edge x-ray absorption fine structure (EXAFS and NEXAFS) showed that the manganese oxide was highly dispersed on the surface of the supports. EXAFS spectra suggest that the manganese active centers on all of the surfaces were surrounded by five oxygen atoms. These metal centers were of a mononuclear type for the Al₂O₃ supported catalyst and multinuclear for the other supports. NEXAFS spectra for the catalysts showed a chemical shift to lower energy and an intensity change in the L-edge features which followed the trend Al₂O₃ > ZrO₂ > TiO₂ > SiO₂. The trends provided insights into the positive role of available empty electronic states required in the reduction step of a redox reaction.
The catalysts were tested for their ozone decomposition reactivity and reaction rates had a fractional order dependency (n < 1) with ozone partial pressure. The apparent activation energies for the reaction was low (3-15 kJ/mol). The support influenced the desorption step (a reduction step) and this effect manifested itself in the pre-exponential factor of the rate constant for desorption. Trends for this pre-exponential factor correlated with trends in NEXAFS features and reflected the ease of electron donation from the adsorbed species to the active center. / Ph. D.
|
32 |
Structure Sensitivity in the Subnanometer Regime on Pt and Pd Supported CatalystsKuo, Chun-Te 29 October 2020 (has links)
Single-atom and cluster catalysts have been receiving significant interest due to not only their capability to approach the limit of atom efficiency but also to explore fundamentally unique properties. Supported Pt-group single atoms and clusters catalysts in the subnanometer size regime maximize the metal utilization and were reported to have extraordinary activities and/or selectivities compared with nanoparticles for various reactions including hydrogenation reactions.
However, the relationship between metal nuclearity, electronic and their unique catalytic properties are still unclear. Thus, it is crucial to establish their relations for better future catalyst design.
Ethylene hydrogenation and acetylene hydrogenation are two important probe reactions with the simplest alkene and alkyne, and they have been broadly studied as the benchmark reactions on the various catalyst systems. However, the catalytic properties and reaction mechanism of those hydrogenation reactions for metal nuclearitiy in the subnanometer regime is still not well understood. In this study, we applied different characterization techniques including x-ray absorption fine structure (XAFS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy(XPS), diffuse reflectance infrared spectroscopy (DRIFTS), calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the structure of Pt/TiO2 and Pd/COF single-atom catalysts and tested their catalytic properties for hydrogenation reactions.
In order to develop such relations, we varied the nuclearity of Pt supported on TiO2 from single atoms to subnanometer clusters to larger nanoparticles. For acetylene hydrogenation, Pt in the subnanometer size regime exhibits remarkably high selectivity to ethylene compared to its nanoparticle counterparts. The high selectivity is resulted from the decreased electron density on Pt and destabilization of C2H4, which were rationalized by X-ray photoelectron spectroscopy and calorimetry results. On the other hand, the activity of H2 activation and acetylene hydrogenation decreased as Pt nuclearity decreased. Therefore, our results show there's a trade-off between activity and selectivity for acetylene hydrogenation.
Additionally, the kinetics measurements of ethylene hydrogenation and acetylene hydrogenation were performed on Pt/TiO2 catalysts, and they found to be structure sensitive for both reactions, which the reaction orders and activation energy changes as particles size change. The activity of ethylene hydrogenation decreases, and activation energy increase from 43 to 86 kJ/mol, as Pt nuclearity decreased from an average size of 2.1 nm to 0.7 nm and single atoms. The reaction orders in hydrocarbons (ethylene and acetylene) were less negative on subnanometer clusters and single atoms in contract to nanoparticles. The results imply that hydrocarbons, ethylene and acetylene species, do not poison the catalyst on Pt in the subnanometer size regime, and hydrogen activation turn to competitive adsorption path with surface hydrocarbons species.
Moreover, single atom Pd supported on imine-linked covalent organic framework was synthesized, characterized by a various of techniques including X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO, and evaluated its catalytic properties for ethylene hydrogenation. The XAS results show that Pd atoms are isolated and stabilized by two covalent Pd–N and Pd-Cl bonds. DRIFTS of CO adsorption shows a sharp symmetrical peak at 2130 cm−1. The Pd single atoms are active for hydrogenation of ethylene to ethane at room temperature. The reaction orders in C2H4 and H2 were 0.0 and 0.5 suggesting that ethylene adsorption is not limiting while hydrogen forms on Pd through dissociative adsorption. / Doctor of Philosophy / More than 90% of chemicals come from petroleum and natural gas, and most of these chemicals are composed of alkene and alkyne, hydrocarbons containing at least one double bonds or triple bonds, such as ethylene, propylene, butenes, butadiene. These small hydrocarbon molecules with carbon-carbon bonds (double or triple) are in great interest of fundamental study and serve as probe units for understanding more complex reactions. Catalysts are materials that can be added to a chemical reaction to accelerate the specific rate of reactions. Most catalysts are supported noble metals thus increase the utilization of metal atoms are important. Decreasing the particle size to increase the metal dispersion is the simple approach to maximize the atom efficiency. However, it is not well understood how do the electronic property and catalytic performance change as particle size decrease. In this work, we focus on the structure sensitivity on catalysts in sub-nanometer region. Supported Pt and Pd catalysts, known to be highly active for hydrogenation reactions, are studied on hydrogenation reactions of acetylene and ethylene, the simplest alkene and alkyne. The Pd and Pt catalysts with particle sizes ranging from single atoms, sub-nanometer clusters and nanoparticles were prepared, characterized and tested for hydrogenation reactions mentioned above. The results show that significantly change in electronic property, catalytic performance (activity and/or selectivity) and reaction kinetics of the catalysts as the particle size changing from nanometer to sub-nanometer region. The fundamental understanding of structure sensitivity on catalysts and their relations between surface structure, electronic property and catalytic performance presented in this work can help the researchers design better catalysts for future work.
|
33 |
Structural and Kinetic Study of Low-temperature Oxidation Reactions on Noble Metal Single Atoms and Subnanometer ClustersLu, Yubing 23 April 2019 (has links)
Supported noble metal catalysts make the best utilization of noble metal atoms. Recent advances in nanotechnology have brought many attentions into the rational design of catalysts in the nanometer and subnanometer region. Recent studies showed that catalysts in the subnanometer regime could have extraordinary activity and selectivity. However, the structural performance relationships behind their unique catalytic performances are still unclear. To understand the effect of particle size and shape of noble metals, it is essential to understand the fundamental reaction mechanism. Single atoms catalysts and subnanometer clusters provide a unique opportunity for designing heterogeneous catalysts because of their unique geometric and electronic properties.
CO oxidation is one of the important probe reactions. However, the reaction mechanism of noble single atoms is still unclear. Additionally, there is no agreement on whether the activity of supported single atoms is higher or lower than supported nanoparticles. In this study, we applied different operando techniques including x-ray absorption fine structure (XAFS), diffuse reflectance infrared spectroscopy (DRIFTS), with other characterization techniques including calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the active and stable structure of Ir/MgAl2O4 and Pt/CeO2 single-atom catalysts during CO oxidation. With all these characterization techniques, we also performed a kinetic study and first principle calculations to understand the reaction mechanism of single atoms for CO oxidation. For Ir single atoms catalysts, our results indicate that instead of poisoning by CO on Ir nanoparticles, Ir single atoms could adsorb more than one ligand, and the Ir(CO)(O) structure was identified as the most stable structure under reaction condition. Though one CO was strongly adsorbed during the entire reaction cycle, another CO could react with the surface adsorbed O* through an Eley-Rideal reaction mechanism. Ir single atoms also provide an interfacial site for the facile O2 activation between Ir and Al with a low barrier, and therefore O2 activation step is feasible even at room temperature. For Pt single-atom catalysts, our results showed that Pt(O)3(CO) structure is stable in O2 and N2 at 150 °C. However, when dosing CO at 150 °C, one surface O* in Pt(O)3(CO) could react with CO to form CO2, and the reacted O* can be refilled when flowing O2 again at 150 °C. This suggests that an adsorbed CO is present in the entire reaction cycle as a ligand, and another gas phase CO could react with surface O* to form CO2 during low-temperature CO oxidation.
Supported single atoms synthesized with conventional methods usually consist of a mixture of single atoms and nanoparticles. It is important to quantify the surface site fraction of single atoms and nanoparticles when studying catalytic performances. Because of the unique reaction mechanism of Ir single atoms and Ir nanoparticles, we showed that kinetic measurements could be applied as a simple and direct method of quantifying surface site fractions. Our kinetic methods could also potentially be applied to quantifying other surface species when their kinetic behaviors are significantly different. We also benchmarked other in-situ and ex-situ methods of quantifying surface site fraction of single atoms and nanoparticles.
To bridge the gap between single atoms and nanoparticles and have a better understanding of the effect of nuclearity on CO oxidation, we also studied supported Ir subnanometer clusters with the average size less than 0.7 nm (< 13 atoms) prepared by both inorganic precursor and organometallic complex Ir4(CO)12. Low-temperature CO adsorption indicates that CO and O2/O could co-adsorb on Ir subnanometer clusters, however on larger nanoparticle the particle surface is covered by CO only. Additional co-adsorption of CO and O2 was studied by CO and O2 calorimetry at room temperature. CO oxidation results showed that Ir subnanometer clusters are more active than Ir single atoms and Ir nanoparticles at all conditions, and this could be explained by the competitive adsorption of CO and O2 on subnanometer clusters. / Doctor of Philosophy / CO oxidation is one of the important reactions in catalytic converters. Three-way catalysts, typically supported noble metals, are very efficient at high temperature but could be poisoned by CO at cold start. Better designed catalysts are required to improve the performance of the catalytic converter to lower the emissions of gasoline engines. To reach this goal, more efficient use of the noble metal is required. Single-atom catalysts consist of isolated noble metal atoms supported on different supports, which provide the best utilization of noble metal atoms and provides a new opportunity for a better design of heterogeneous catalysts. The unique electronic and geometric properties of metal single atoms catalysts could lead to a better activity and selectivity. Subnanometer clusters have also been shown to have unique electronic properties. With a better understanding of the structure of supported single atoms and subnanometer clusters, their catalytic performance can be optimized for better catalysts in the catalytic converter and other applications. In this work, we applied in-situ and operando characterization, kinetic studies and first principle calculations aiming to understand the active and stable structure of noble metal single atoms and vi subnanometer clusters under reaction condition, and their reaction mechanisms during CO oxidations. For MgAl₂O₄ supported Ir single atoms, our results suggest that CO could be co-adsorbed with O₂/O under reaction conditions. These multiple ligands adsorption leads to a unique reaction mechanism during CO oxidation. Though one CO was adsorbed during the whole reaction cycle, another gas phase CO could react with the O* species co-adsorbed with CO through an Eley-Rideal mechanism. This suggests that Ir single atoms are no longer poisoned by CO, and on the other hand the O₂ can be activated on an interfacial site with a low reaction barrier. Ir subnanometer clusters showed higher activities than Ir single atoms and nanoparticles. In-situ IR and high energy resolution fluorescence detected – X-ray absorption near edge spectroscopy (HERFD-XANES) showed that CO could co-adsorb with O₂ at room temperature, and this competitive adsorption could explain the high activity during CO oxidation. Supported Ir single atoms and subnanometer clusters are not poisoned by CO and O₂ could be co-adsorbed, this could be potentially applied to solve the poisoning of catalyst in the catalytic converter at cold start temperature. We also performed kinetic study on CeO₂ supported Pt single atoms. Similar behavior was observed, and we showed that the CO and O co-adsorbed complex is stable in O₂ and N₂, but could react in CO. With the understanding of the active structure of noble metal single atoms and the origin of activities, better-designed catalysts can be synthesized to improve the activity and selectivity of low-temperature oxidation reactions.
|
34 |
Characterization of Self-Assembled Monolayers of Oligo(phenyleneethynylene) Derivatives on GoldWatcharinyanon, Somsakul January 2007 (has links)
<p>Oligo(phenyleneethynylene) (OPE) molecules are a class of fully conjugated aromatic molecules, that attract attention for their application as “molecular wires” in molecular electronic devices. In this thesis work, self-assembled monolayers (SAMs) formed from a variety of OPE derivatives have been studied. The chemical properties, structure, and packing density of the SAMs have been characterized utilizing techniques such as high-resolution X-ray photoemission spectroscopy (HRXPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Infrared reflection absorption spectroscopy (IRRAS), contact angle measurements, and atomic force microscopy (AFM).</p><p>In a first study, three OPE-derivatives, with benzene, naphthalene and anthracene, respectively, inserted into the backbone, and an acetyl-protected thiophenol binding group were found to form SAMs on Au(111) substrates with lower molecular surface densities and larger molecular inclination as the lateral π-system increases.</p><p>In a second study, porphyrin was introduced as the end group to a wire-like molecule such as OPE. The purpose was to obtain well-organized and functionalized surfaces with optical and redox properties. Three porphyrin-functionalized OPEs had different binding groups, an acetyl-protected thiophenol, a benzylic thiol, and a trimethylsilylethynylene group, and were found to form SAMs on gold surfaces with difference in structure and degree of order. The molecules with the acetyl-protected thiophenol binding group were found to form a high quality SAM compared to the other two. This SAM exhibits a well-ordered and densely packed layer.</p><p>This study gives rise to a better understanding of SAM formation of OPE derivatives, and will form a base for further investigations of charge transport properties of these molecular films, which is of interest for applications in molecular electronic devices.</p>
|
35 |
Characterization of Self-Assembled Monolayers of Oligo(phenyleneethynylene) Derivatives on GoldWatcharinyanon, Somsakul January 2007 (has links)
Oligo(phenyleneethynylene) (OPE) molecules are a class of fully conjugated aromatic molecules, that attract attention for their application as “molecular wires” in molecular electronic devices. In this thesis work, self-assembled monolayers (SAMs) formed from a variety of OPE derivatives have been studied. The chemical properties, structure, and packing density of the SAMs have been characterized utilizing techniques such as high-resolution X-ray photoemission spectroscopy (HRXPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Infrared reflection absorption spectroscopy (IRRAS), contact angle measurements, and atomic force microscopy (AFM). In a first study, three OPE-derivatives, with benzene, naphthalene and anthracene, respectively, inserted into the backbone, and an acetyl-protected thiophenol binding group were found to form SAMs on Au(111) substrates with lower molecular surface densities and larger molecular inclination as the lateral π-system increases. In a second study, porphyrin was introduced as the end group to a wire-like molecule such as OPE. The purpose was to obtain well-organized and functionalized surfaces with optical and redox properties. Three porphyrin-functionalized OPEs had different binding groups, an acetyl-protected thiophenol, a benzylic thiol, and a trimethylsilylethynylene group, and were found to form SAMs on gold surfaces with difference in structure and degree of order. The molecules with the acetyl-protected thiophenol binding group were found to form a high quality SAM compared to the other two. This SAM exhibits a well-ordered and densely packed layer. This study gives rise to a better understanding of SAM formation of OPE derivatives, and will form a base for further investigations of charge transport properties of these molecular films, which is of interest for applications in molecular electronic devices.
|
36 |
Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related PhenomenaManju, U 02 1900 (has links)
Transition metal oxides have proven to be a fertile research area for condensed matter physicists due to the fascinating array of superconducting, magnetic and electronic properties they exhibit. A particular resurgence of intense activity in investigating the properties of these systems followed the discovery of high temperature superconductivity in the cuprates, colossal magnetoresistance in the manganites, ferroelectricity in the cobaltites and simultaneous ferroelectric and ferromagnetic ordering in the manganites. These diverse properties of transition metal compounds arise due to the presence of strong electron-electron interactions within the transition element 3d states. Indeed, it is the competition between the localizing effects of such interactions and the comparable hopping strengths driving the system towards delocalization, that is responsible for these wide spectrum of interesting properties. In terms of theoretical and fundamental issues, electronic structure of transition metal oxides play a most important role, providing a testing ground for new many-body theoretical approaches treating the correlation problem at various levels of approximations. In addition to this rich spectrum of properties, metal-insulator transitions often occur and can even be coincident with structural or magnetic changes due to the strong coupling between charge, magnetic and lattice degrees of freedom. However, in spite of the immense activities in this area, the underlying phenomena is not yet completely understood. A careful investigation of the electronic structure of these systems will help in the microscopic understanding of these and photoelectron spectroscopy has been established as the most powerful tool for investigating the electronic structures of these systems. In this thesis we investigate the electronic structures of some of these transition metal oxides and the metal-insulator transition as a function of electron correlation strength and doping of charge carriers by means of photoelectron spectroscopy; we analyze the experimental results using various theoretical approaches, in order to obtain detailed and quantitative understandings. This thesis is organized into seven chapters. Chapter 1 is a general introduction to the various concepts discussed in this thesis. Here we briefly describe the various mechanisms and theoretical formalisms used for understanding the metal-insulator transitions in strongly correlated systems and the evolution of the electronic structure across the transition. The experimental and the calculational techniques used in this thesis is described in Chapter 2. This includes different sample synthesis techniques and the characterization tools used in the present study. Photoelectron spectroscopic techniques used for probing the electronic structure of various systems are also discussed in this chapter.
In Chapter 3, we discuss the coexistence of ferromagnetism and superconductivity in ruthenocuprates by looking at the electronic structures of RuSr2Eu1.5Ce0.5Cu2O10 which is a ferromagnetic superconductor having the ferromagnetic TC ~ 100 K and a superconducting transition of ~ 30 K compared with RuSr2EuCeCu2O10 which is a ferromagnetic (TC ~ 150 K) insulator in conjunction with two reference systems, RuSr2GdO6and Sr2RuO4. The coexistence of ferromagnetic order with superconductivity below the superconducting temperature is an interesting issue since the pair-breaking due to magnetic interactions is not significant in these cases. Extensive photoelectron spectroscopic measurements were performed on these systems and our results show that Eu and Ce in both the ruthenocuprates exists in 3+ and 4+ states, respectively. Also the analysis of the Ru 3d and 3p core levels suggests that Ru remains in the pentavalent state in both the cases. The constancy of Ru valency with doping of charge carriers that bring about an insulator to metal transition and the superconducting state suggests that the electronic structure and transport properties of these compounds are not governed by the Ru-O plane, but by the Cu-O plane, much as in the case of other high TC cuprates. Analysis of the Cu 2p core level spectra in terms of a cluster model, including configuration interaction and multiplet interactions between Cu 3d and 2p as well as that within the Cu 3d states, establish a close similarity of the basic electronic structure of these ruthenocuprates to those of other high TC cuprates. Here the charge transfer energy, Δ << Udd,Cu 3d multiplet-averaged Coulomb repulsion energy, establishing the compounds to be deep in the charge transfer regime.
Continuing with the ruthenocuprate systems in Chapter 4, we look at the electronic structure of hole doped La2CuRuO6systems using various photoemission techniques. It was expected that since the substitution of La3+by Sr2+changes the d electron count, the system will undergo a metal to insulator transition, but the transport properties show that all of them remain semiconducting through out the lowest temperature of measurement. A careful analysis of the Ru 3d and 3p core level spectra shows that Ru exists in Ru 4+state in La2CuRuO6and goes towards Ru 5+state with hole doping. This suggests that the doped holes affects the electronic structure of the Ru levels in these systems. A spectral decomposition of the Ru 3d core level suggests the existence of a spin orbit split doublet having two peaks, a main core level peak and a satellite peak at the higher binding energy side of the main peak and the intensity ratio of the satellite peak to the main peak increases with the insulating nature of the compounds as reported for other Ru 4d strongly correlated systems. This observation is also consistent with the transport properties. Cu 2p core level spectra also shows variations in the satellite-to-main peak Cu 2p intensities suggesting that the electronic structure of the Cu levels are also getting affected with Sr doping. Valence band spectral features near the Fermi level shows that the spectral weight is highest for La2CuRuO6and depletes slowly with Sr doping consistent with the expected d electron count as suggested by the Ru valencies.
In Chapter 5 and Chapter 6 we discuss the electronic structure investigations of two early transition metal oxide series, namely Ca1−xSrxVO3and Ce1−xSrxTiO3. Surface sensitivity dependence of photoemission experiments has been explored to show that the surface and the bulk electronic structures of Ca1−xSrxVO3system is different. Photoemission spectra of this system using synchrotron radiation reveal a hither to unnoticed polarization dependence of the photoemission matrix elements for the surface component leading to substantial underestimation. Extracted bulk spectra from experimentally determined electron escape depth and underestimation of surface contributions resolve the puzzling issues that arose due to the recent diverse interpretations of the electronic structure in Ca1−xSrxVO3. Keeping in mind the above-mentioned caveat, the present results still clearly establish that the linear polarization of synchrotron radiation plays a key role in determining the spectral lineshape in these systems. The experimentally-determined bulk spectra provide an understanding of the electronic structure in Ca1−xSrxVO3, consistent with experimental γ values, calculated change in the d-bandwidth and the geometrical/structural trends across the series, thereby resolving the puzzle concerning the structure-property relationship in this interesting class of compounds. In Chapter 6 we discuss the issues of metal-insulator transition close to the d0limit as well as the evolution of the electronic structure of a strongly correlated system as a function of electron occupancy, by investigating the family of Ce1−xSrxTiO3compounds by recording core level as well as valence band photoemission spectra using lab source as well as synchrotron radiations. Core level Ce 3d spectra from Ce1−xSrxTiO3samples establish a trivalent state of Ce in these compounds for all values of x confirming that charge doping in the present system does not alter the electronic structure of Ce. Hence the change in valency due to Sr substitution and thus, the carrier number, takes place only in the Ti 3d-O 2p manifold. We also carried out extensive VUV photoemission experiments on these samples with the photon energy varying between 26-122 eV. From the difference spectrum obtained by subtracting the off-resonance spectrum from the on-resonance one, we obtain the Ce 4f spectral signature; thus obtained Ce 4f spectrum which has a peak at about 3 eV binding energy and shows no intensity at EF even for the metallic samples, consistent with a Ce3+state. In order to study the states near EF responsible for the metal-insulator transition in these compounds, we recorded the valence band spectra at the Ce 4f off-resonance condition so that the coherent and the incoherent spectral features arising from the Ti 3d states could be clearly resolved, allowing us to investigate the metal insulator transition in the Ce1−xSrxTiO3system as a function of Sr or hole doping. The experimental spectra of the metallic compounds exhibit an intensity of the incoherent feature considerably larger than that predicted by theory. This discrepancy is possibly due to a difference in the surface and the bulk electronic structures of these compounds.
Chapter 7 is divided into two parts. In the first part we discuss the extended x-ray absorption fine structure (EXAFS) studies performed on two transition metal oxide series, La1−xSrxCoO3and La1−xSrxFeO3to look at the local structure distortions happening around the transition metal ions and its role in bringing out metal to insulator transitions in transition metal oxide systems. Here we chose to investigate these two systems since La1−xSrxCoO3undergoes an insulator to metal transition for x ∼ 0.15 and La1−xSrxFeO3remains insulating for the entire range of doping. The static mean square relative displacement, which we believe to be a representation of the disorder present in the system, extracted by fitting the experimental data by a correlated Einstein model, as a function of composition in La1−xSrxCoO3saturates beyond the critical composition where as the disorder parameter continues to increase through out the entire doping range in the case of La1−xSrxFeO3where metal-insulator transition is absent. In the second part of Chapter 7 we discuss the x-ray absorption near edge structure (XANES) studies performed on the above mentioned series of systems. Co K-edge XANES spectra of La1−xSrxCoO3show that there is a systematic shift of the main absorption peak with hole doping suggesting that the Co valency changes systematically with Sr doping. Also, the pre-edge feature of LaCoO3shows the transitions to t2g level clearly showing that Co3+in LaCoO3is not in a pure low spin (t6 2g) state. The Fe K-edge XANES spectra of La1−xSrxFeO3also exhibit a systematic shift to the higher energy side with increase in Sr content, indicating an increase in the Fe valence. Also from the La L3edge analysis, it can be concluded that the oxygen environment around La and the electronic configuration of La are systematically changing with Sr doping.
|
37 |
Atomic scale structural modifications in irradiated nuclear fuelsMieszczynski, Cyprian 11 April 2014 (has links) (PDF)
This thesis work reports in depth analyses of measured µ-XRD and µ-XAS data from standard UO2, chromia (Cr2O3) doped UO2 and MOX fuels, and interpretation of the results considering the role of chromium as a dopant as well as several fission product elements. The lattice parameters of UO2 in fresh and irradiated samples and elastic strain energy densities in the irradiated UO2 samples have been measured and quantified. The µ-XRD patterns have further allowed the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated fuel pellets. Attempts have been made to determine lattice parameter and next neighbor atomic environment in chromia-precipitates found in fresh chromia-doped fuel pellets. The local structure around Cr in as-fabricated chromia-doped UO2 matrix and the influence of irradiation on the state of chromium in irradiated fuel matrix have been addressed. Finally, for a comparative understanding of fission gases behavior and irradiation induced re-solution phenomenon in standard and chromia-doped UO2, the last part of the present work tries to clarify the fission gas Kr atomic environment in these irradiated fuels. The work performed on Kr, by micro-beam XAS, comprises the determination of Kr next neighbor distances, an estimation of gas atom densities in the aggregates, and apparent internal pressures in the gas bubbles.
|
38 |
Local Structure-Property Relationship in Some Selected Solid State MaterialsMukherjee, Soham January 2015 (has links) (PDF)
The thesis entitled “Local structure-property relationship in some selected Solid State Materials” mainly focuses on two fundamental topics: (a) evaluation of some standard global structural concepts in terms of local structure to provide a unique description of the crystal structure, and (b) the role of the crystal structure at different length-scales in controlling the properties in some selected materials.
|
39 |
Self-assembly of monolayers of aromatic carboxylic acid molecules on silver and copper modified gold surfaces at the liquid-solid interfaceAitchison, Hannah January 2015 (has links)
Exploiting coordination bonding of aromatic carboxylic acids at metal surfaces, this thesis explores new directions in the design and application of self-assembled monolayers (SAMs). The SAMs are investigated using a multi-technique approach comprising of a complementary combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, the X-ray standing wave technique (XSW) was used to characterise the substrates. The process of layer formation and the final structures of the SAMs are found to be strikingly dependent on the combination of molecule and substrate, which is discussed in terms of the intermolecular and molecule-substrate interactions, bonding geometries and symmetry of the organic molecules. This is illustrated by the dramatic difference between molecular adsorption on Ag and Cu for molecules such as biphenyl-3,4',5-tricarboxylic acid and biphenyl-4-acetic acid. In the case of self-assembly on Cu, the molecule-substrate interactions play a decisive role in the resulting SAM structure, whereas on Ag, the intermolecular interactions dominate over the weaker molecule-substrate binding. This exploration of the balance of interactions that lead to the formation of these SAM structures lays the foundation for a systematic design of the structures and properties of aromatic carboxylic acid based monolayers. Finally, different applications and properties of some SAMs were investigated, namely coordination of a Pd(II) complex to a pyridine/pyrazole terminated molecule adsorbed on Ag. Evidence of coordination of Pd(II) to single molecules was provided by STM, XPS and NEXAFS spectroscopy. Additionally, controlled STM tip induced modification of local areas of a 1,3,5-tris(4-carboxyphenyl)benzene SAM on Ag was performed, opening an exciting prospect for nanoscale molecular manipulation.
|
40 |
Homogeneity and elemental distribution in self-assembled bimetallic Pd–Pt aerogels prepared by a spontaneous one-step gelation processSchmidt, Thomas Justus, Oezaslan, Methap, Liu, W., Nachtegaal, Maarten, Frenkel, Anatoly I., Rutkowski, B., Werheid, Matthias, Herrmann, Anne-Kristin, Laugier-Bonnaud, C., Yilmaz, H.-C., Gaponik, Nikolai, Czyrska-Filemonowicz, A., Eychmüller, Alexander 06 April 2017 (has links)
Multi-metallic aerogels have recently emerged as a novel and promising class of unsupported electrocatalyst materials due to their high catalytic activity and improved durability for various electrochemical reactions. Aerogels can be prepared by a spontaneous one-step gelation process, where the chemical co-reduction of metal precursors and the prompt formation of nanochain-containing hydrogels, as a preliminary stage for the preparation of aerogels, take place. However, detailed knowledge about the homogeneity and chemical distribution of these three-dimensional Pd–Pt aerogels at the nano-scale as well as at the macro-scale is still unclear. Therefore, we used a combination of spectroscopic and microscopic techniques to obtain a better insight into the structure and elemental distribution of the various Pd-rich Pd–Pt aerogels prepared by the spontaneous one-step gelation process. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) in combination with energy-dispersive X-ray spectroscopy (EDX) were employed in this work to uncover the structural architecture and chemical composition of the various Pd-rich Pd–Pt aerogels over a broad length range. The Pd80Pt20, Pd60Pt40 and Pd50Pt50 aerogels showed heterogeneity in the chemical distribution of the Pt and Pd atoms inside the macroscopic nanochain-network. The features of mono-metallic clusters were not detected by EXAFS or STEM-EDX, indicating alloyed nanoparticles. However, the local chemical composition of the Pd–Pt alloys strongly varied along the nanochains and thus within a single aerogel. To determine the electrochemically active surface area (ECSA) of the Pd–Pt aerogels for application in electrocatalysis, we used the electrochemical CO stripping method. Due to their high porosity and extended network structure, the resulting values of the ECSA for the Pd–Pt aerogels were higher than that for a commercially available unsupported Pt black catalyst. We show that the Pd–Pt aerogels possess a high utilization of catalytically active centers for electrocatalytic applications based on the nanostructured bimetallic framework. Knowledge about the homogeneity and chemical distribution of the bimetallic aerogels can help to further optimize their preparation by the spontaneous one-step gelation process and to tune their electrocatalytic reactivity.
|
Page generated in 0.1215 seconds