Spelling suggestions: "subject:"array radiography"" "subject:"foray radiography""
1 |
High resolution phase contrast x-ray radiographyArhatari, Benedicta Dewi January 2006 (has links) (PDF)
The conventional approach for x-ray radiography is absorption contrast. In recent years a new approach that eliminates the usual requirement for absorption and allows the visualization of phase based on refractive index features in a material has been demonstrated. This so-called “phase contrast imaging” has now been applied using a wide range of radiation and samples. In this work we are motivated by the need to find optimal conditions for achieving high quality phase contrast images. We consider image formation using the free space propagation of x-rays from a point source passing through a sample. This imaging model is a lens-less configuration and, as such, is very useful for x-ray wavelengths where lenses are difficult to fabricate. Although no lenses are used, image magnification is still achieved due to the expansion of the wavefront as it propagates from the point source illumination. The short wavelength and penetrating power of x-rays make them ideal for non-destructive studies of microscopic samples. However, these techniques are also important for investigating larger, non-microscopic samples.
|
2 |
Estudo do envelhecimento de um tubo de raios X por métodos não invasivosBOTTARO, MARCIO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:53:03Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:12Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
3 |
Estudo do envelhecimento de um tubo de raios X por métodos não invasivosBOTTARO, MARCIO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:53:03Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:12Z (GMT). No. of bitstreams: 0 / O objetivo do presente trabalho foi a avaliação do envelhecimento de um tubo de raios X com anodo de tungstênio utilizado para aplicações de radiodiagnóstico, por meio de aplicação de cargas de acordo com distribuições de cargas de trabalho da realidade brasileira e avaliações periódicas de grandezas associadas à qualidade de radiação produzida. Para o propósito deste trabalho, um sistema clínico com retificação monofásica de onda completa foi utilizado. Para avaliação em longo prazo das características do tubo de raios X relacionadas à carga de trabalho foi necessária a medição de parâmetros que pudessem representar de forma quantitativa o envelhecimento do tubo de raios X, estando estes relacionados principalmente ao desgaste do anodo. Esta medição indireta do envelhecimento do tubo levou a escolha de quatro parâmetros, alguns deles normalmente empregados na prática de controle de qualidade de equipamentos de radiologia diagnóstica: primeira e segunda camada semi-redutora (CSR), dimensões dos pontos focais, medida não invasiva do Potencial de Pico Prático e espectrometria de raios X. Estes parâmetros foram medidos inicialmente e após cada aplicação de carga pertinente. Para garantir a confiabilidade dos resultados, condições de reprodutibilidade foram estabelecidas para cada parâmetro de avaliação. As incertezas envolvidas em todos os processos de medição foram calculadas para avaliação da real contribuição dos efeitos do envelhecimento do tubo de raios X nos parâmetros não invasivos. Dentre os parâmetros avaliados, os que mostraram maior sensibilidade aos efeitos da aplicação de carga em longo prazo foram as energias médias obtidas por meio de espectrometria de raios X e as camadas semi-redutoras. Um modelo relacionado a estes parâmetros foi aplicado e estimativas da taxa de envelhecimento do tubo de raios X para diferentes tensões de aceleração e correntes anódicas foram obtidas. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
4 |
The analysis of diffraction measurements of internal strains in metal matrix compositesWatts, Michael Robert January 1999 (has links)
No description available.
|
5 |
An atomic force microscopy study of the crystal growth interface of solution grown potassium hydrogen phthalateEster, Guy R. January 1999 (has links)
No description available.
|
6 |
Defect Formation Mechanisms in Powder-Bed Metal Additive ManufacturingCunningham, Ross W. 01 May 2018 (has links)
Metal Additive Manufacturing (AM) provides the means to fabricate complex metallic parts with reduced time to market and material waste and improved design freedom. Industries with strict materials qualifications such as aerospace, biomedical, and automotive are increasingly looking to AM to meet their production needs. However, significant materials-related challenges impede the widespread adoption of these technologies for critical components. In particular, fatigue resistance in as-built parts has proven to be inferior and unpredictable due to the large and variable presence of porosity. This presents a challenge for the qualification of any load bearing part without extensive post-processing, such as Hot Isostatic Pressing, and thorough inspection. Improved understanding of the underlying mechanisms behind defect formation will assist in designing process improvements to minimize or eliminate defects without relying entirely on postprocessing. In this work, the effects of powder, processing parameters, and post-processing on porosity formation in powder-bed metal AM processes are investigated using X-ray microtomography and a newly developed in-situ high speed radiography technique, Dynamic Xray Radiography. High resolution X-ray computed tomography is used to characterize defect morphology, size, and spatial distribution as a function of process and material inputs. Dynamic X-ray Radiography, which enables the in-situ observation of the laser-metal interactions at frame rates on the order of 100 kHz (and faster), is utilized to understand the dynamic behavior and transitions that occur in the vapor depression across process space. Experimental validation of previously held assumptions regarding defect formation as well as new insights into the influence of the vapor cavity on defect formation are presented.
|
7 |
Measuring Diffusion Coefficients in Low-Porosity Rocks by X-Ray RadiographyMaldonado Sanchez, Guadalupe 12 November 2020 (has links)
Deep geological repositories (DGR) are considered an effective long-term solution for radioactive waste disposal. Sedimentary (argillaceous formations) and crystalline rocks are currently under investigation worldwide as potential host formations for DGR. Their low porosity (<1-2 %) and very low hydraulic conductivity result in diffusion-dominated solute transport. There is a need to investigate their diffusion properties in detail, the long-established diffusion methods do not allow an evaluation of the spatial relationship between tracers and the characteristics of the geological medium. The aim of this project was to measure diffusion coefficients in low-porosity rocks (< 2%) using X-ray radiography and iodide tracer. The method is a non-destructive technique based on the principle of X-ray attenuation; it provides temporal- and spatially-resolved information of a highly attenuating tracer diffusing in a sample. Samples from the Cobourg Formation, an Ordovician argillaceous limestone from the Michigan Basin, and from the Lac du Bonnet batholith, an Archean granitic pluton were used in this study. X-ray radiography data from the Cobourg Formation indicate tracer accumulation occurs on dark argillaceous layers in the rock characterized by clay minerals and organic matter. It is proposed that the I– tracer solution underwent photo-chemical oxidation, leading to the formation of I2, a highly reactive volatile iodine species and I3–, which readily reacted with humic substances contained in the clay- and organic rich zones in the limestone samples. In the case of the granitic samples, attempts at measuring diffusion coefficients encountered several challenges. The results indicate that tracer signal can be detected, however diffusion signal is masked by imaging errors and noise.
|
8 |
Experimental Measurement and Modeling of Regression Rate Phenomena in Solid Fuel Ramjet CombustorsJay Vincent Evans (11023029) 08 December 2023 (has links)
<p dir="ltr">Instantaneous fuel regression rate within a solid fuel ramjet combustor was characterized using X-ray radiography and ultrasonic transducer measurements. Experiments were performed with cylindrical, center-perforated hydroxyl-terminated polybutadiene (HTPB) fuel grains at three mass fluxes (407-561 kg/m2-s) with consistent inlet total temperatures and chamber pressures. Ultrasonic transducer measurements demonstrated changes of web thickness ranging from 7.50-9.85 mm and regression rate measurements ranging from 1.35-1.74 mm/s. Local maxima of change in web thickness due to flow reattachment and erosive burning were consistently measured with the ultrasonic transducers. Changes in port radius on the order of 8-9 mm and regression rates of approximately 1.25 mm/s were deduced from the X-ray radiography images. Structure of the flow reattachment region was evident in measurements from the X-ray radiography images captured near the combustor entrance while images captured at the mid-length of the combustor exhibited more uniform fuel regression profiles. Ultrasonic measurements of change in web thickness were consistently greater in magnitude relative to X-ray radiography measurements. X-ray radiography imaging allowed for the more accurate measurement of fuel regression with the greatest axial spatial resolution while ultrasonic transducer measurements yielded the greatest radial spatial resolution. The change in web thickness calculated with weight-based techniques yielded smaller magnitude measurements of change in web thickness relative to X-ray radiography.</p><p dir="ltr">Time-dependent measurements of web thickness and regression rate along the port of aluminum-loaded and boron carbide-loaded, hydroxyl-terminated polybutadiene (HTPB) fuel grains were measured in a solid fuel ramjet combustor with X-ray radiography. The combustor was operated at three mass flux conditions, ranging from 397-532 kg/m2-s, with consistent chamber pressures and upstream-of-combustor total temperatures of 1313 kPa and 748 K, respectively. A cross-correlation-based edge detection scheme was used to extract the fuel grain edges within X-ray radiography images collected at 15 Hz. Cross-section photographs of the post-combustion fuel grain surfaces exhibited evidence of flow reattachment and large aft-end regression. Aluminized fuel grains exhibited average weight-based regression rates of 1.29-1.48 mm/s, and boron carbide-loaded fuel grains yielded average regression rates of 1.21-1.38 mm/s. Head-end X-ray measurements of change in port radius indicated flow reattachment, particularly for the bottom (theta = 180) edge of the fuel grain. The absolute maximum of change in port radius, which ranged between 8.56-10.31 mm for aluminized fuel grains and 8.22-9.40 mm for boron carbide-containing fuel grains, did not always coincide with the flow reattachment location. Time-averaged regression rate profiles measured with X-ray radiography were relatively uniform along the port axis but smaller in magnitude compared to the weight-based measurements; 1.17-1.35 mm/s for the aluminum-loaded fuel grains and 1.07-1.24 mm/s for the boron carbide-loaded fuel grains. Pre-ignition fuel regression, on the order of 1.5 mm, was determined to be the cause of the over-prediction of regression rate by weight-based measurements compared to X-ray measurements.</p><p dir="ltr">The weight-based average regression rates measured in tests conducted with the axisymmetric solid fuel ramjet test article in its various configurations were compared to quantify the effects of average port air mass flux, bypass air addition, carbon black addition, and metal particle addition on regression rate. Baseline tests without an aft-mixing section or bypass air addition fuel grains containing carbon black yielded a regression rate coefficient of a = 5.33E-2 and an exponent of n = 0.50 for p4 = 1179-1298 kPa. Including an aft-mixing section without bypass air addition yielded regression rates of 0.94-1.04 mm/s due to the increased residence time. Bypass air addition of 14\% bypass ratio reduced the regression rate to 0.83-0.92 mm/s, and 30% bypass ratio reduced the regression rate to 0.80-0.82 mm/s. For otherwise equal tests, adding carbon black to the fuel grain increased the regression rates from 0.76-0.78 mm/s to 0.83-0.92 mm/s (6-21%). Aluminized fuel grains exhibited an increase in regression rate coefficient over the baseline fuel grains from a = 5.33E-2 to a = 6.30E-2 (18%), but the regression rate exponent remained at n = 0.50. Boron carbide (B4C) addition reduced the regression rate exponent to n = 0.46 but increased the regression rate coefficient to a = 7.55E-2; a 42% increase.</p><p dir="ltr">A simplified solid fuel ramjet combustion model which includes (1) turbulent heat convection, (2) radiation, (3) radiation-coupled surface blowing, (4) unsteady sub-surface heat conduction, (5) solid fuel regression, (6) gas-phase combustion, and (7) fuel port hydrodynamics was developed for regression rate prediction over a range of combustor geometries and operating conditions. Turbulent convection was modeled with empirical correlations relating non-dimensional boundary layer transport numbers. Radiative heat transfer was estimated using modified empirical correlations for radiation in a slab hybrid rocket combustor. Hybrid rocket combustion theory was used to model surface blowing. The condensed-phase heat transfer was modeled by solving the unsteady, variable thermophysical property, regressing surface heat equation with an explicit time-integration, finite volume scheme on a non-uniform grid. A general Arrhenius expression was used to estimate the fuel regression rate. Chemical equilibrium calculations for a stoichiometric HTPB/air diffusion flame were used to model the gas-phase combustion. The port gas dynamics were modeled with compressible flow ordinary differential equations. The results of these individual physical processes were examined in detail for a high mass flux (G_air = 561 kg/m2-s) case. Experiments performed in the axisymmetric solid fuel ramjet combustor were simulated in the model, which yielded a lower regression rate versus mass flux exponent of n = 0.39 compared to the experimentally-obtained n = 0.50. A larger parameter sweep of the model yielded a mass flux exponent of n_1 = 0.30, a pressure exponent of n_2 = 0.04, and an inflow total temperature exponent of n_3 = 0.39. These exponents are less than those observed in other works, but the model successfully captured the relative influence of mass flux, chamber pressure, and inflow total temperature.</p><p dir="ltr">A combustion diagnostic consisting of X-ray radiography and thermocouples embedded within the fuel grain was successfully applied and demonstrated in a solid fuel ramjet slab combustor. One representative test condition with an air mass flowrate of 1 kg/s, an upstream-of-combustor static pressure of 560 kPa, and an upstream-of-combustor total temperature of 639 K was examined. Changes in web thickness of approximately 4 mm and steady-state regression rates of 0.35 mm/s were measured at the thermocouple locations. Condensed-phase temperature measurements yielded fuel grain surface temperatures of 820 K and temperature profiles which were compared to theoretical Michelson profiles. The Michelson profile closely matched the thermocouple-measured temperature profile at one axial location. Sub-surface conductive heat fluxes of 0.35 MW/m2, heat fluxes required to vaporize solid fuel of 0.60 MW/m2$, and surface heat fluxes of 0.95 MW/m2$ were estimated using the condensed-phase temperature profiles.</p>
|
9 |
Inkjet printed drops and three-dimensional ceramic structuresLiu, Yuanyuan January 2017 (has links)
Inkjet printing is a versatile manufacturing method with applications beyond its traditional application in graphics and text printing, particularly in structural and functional materials. This thesis aims to enhance the understanding of DOD inkjet printing processes by investigating the behaviour of solvent mixtures and nanoparticle suspensions to identify the key parameters affecting drop ejection, drying and stacking processes. Drop ejection and flight were investigated with two modes of inkjet printheads, using a range of fluids formulated from solvent mixtures and characterised by the dimensionless Z number. The printable range was found to be 1.17 smaller or equal to Z smaller or equal to 36.76 for a 10 pl (21.5 micro metre diameter) shear-mode Dimatix printhead. However, with an 80 micro metre diameter squeeze-mode MicroFab printhead, the range was found to be narrower with 4.02 smaller or equal to Z smaller or equal to 16.2. However, both printheads were found to show a printable range of Weber number with 0.4 <We <20. Weber number is determined by the drop velocity and hence the actuating pulse. When designing inks for future printing work, not only the fluid properties, but also the pulse voltages need to be considered. The drop stacking and solidification processes of drops containing nano ZrO2 particles were investigated to enhance the understanding of drop drying and drop/drop interactions. In-situ synchrotron X-ray radiography provides a promising method to track the time-evolved solid segregation within printed drops during drying. Both the initial contact angle and substrate temperature during printing strongly influence the drying process and the final dried deposit shape. The drops were first pinned and then there was a slight sliding of the three-phase contact line. Drops were deformed by the stacking of overprinted drops when printed on Kapton tapes and silicon wafer surfaces, but not on glass slides due to the small contact angle of water on glass slides. Crack-like defects were found at the edge of the final dried stacking structures. The coffee stain effects within a single inkjet printed droplet and the 3D structures before and after sintering were investigated to find out the influence of ink properties, printing parameters and substrate temperature on inkjet printed structures. It was found coffee staining was more obvious at high substrate temperatures. When adding 25 vol% ethylene glycol (EG) or 5 wt% polyethylene glycol (PEG), the coffee stain effect is reduced or eliminated under room temperature drying. X-ray tomography has been demonstrated as a valuable tool for the characterization of 3D printed objects and defects that form during their manufacture. Defects were characterised as microvoids or large-scale crack-like defects. The majority of the microvoids revealed are associated with mechanisms and processes within a single drop, e.g. segregation during dryings such as the formation of coffee stains or coffee rings. The size or distribution of microvoids can be controlled by changing the ink formulation, with higher PEG content inks showing lower concentrations of microvoids.
|
10 |
Approche multi-énergies associée à un détecteur spectrométrique rayons X pour l’identification de matériaux / Multi-energy methods for material identification using an X-ray spectrometric photon counting detectorBeldjoudi, Guillaume Nordine 19 September 2011 (has links)
Le développement des détecteurs de rayons X en comptage à base de semiconducteurs est en plein essor depuis une dizaine d’années, et des applications aussi bien dans le domaine médical que dans le domaine du contrôle non destructif sont envisagées. Ces détecteurs permettent en effet de réaliser des mesures à des énergies multiples en une seule acquisition, et ce avec une excellente séparation énergétique. Depuis les années 2008-2009, il semble qu’une véritable course se soit lancée pour le développement de détecteur permettant des mesures multi-énergies sur un nombre toujours plus nombreux de bandes d’énergies. Cependant, à ce jour, parmi l’ensemble des travaux qui ont été réalisés, l’intérêt de réaliser des mesures sur un grand nombre d’énergies n’a pas été démontré pour l’identification de matériaux. Dans le cadre d’une étude en sécurité, nous avons évalué l’intérêt lié à l’utilisation de détecteurs de rayons X en comptage permettant la réalisation de mesures sur plusieurs bandes d’énergies. Le domaine applicatif étudié concerne l’identification de matériaux dans les bagages des voyageurs. Nous avons tout d’abord développé une méthode originale d’identification de matériaux homogènes applicable à tout type de détecteur multi-énergies. Dans un premier temps, nous avons étudié, en simulation, l’évolution des performances d’identification de matériaux avec l’augmentation du nombre de bandes d’énergies de comptage. Un processus d’optimisation a été réalisé dans le but de déterminer, pour certaines configurations, une géométrie optimale des bandes d’énergies de comptage. Dans un second temps, les conséquences résultant de la prise en compte de la fonction de réponse du détecteur ont été quantifiées par la simulation de différents effets détecteurs (partage de charge, résolution en énergie). Une validation expérimentale a enfin pu être effectuée en utilisant un détecteur spectrométrique en comptage. À partir des mesures réalisées avec un tel détecteur, un regroupement des données nous a permis d’évaluer les performances d’identification de détecteurs possédant un nombre de bandes d’énergies de comptage différent. Enfin, nous avons mené une étude préliminaire sur la transposition à la tomographie multi-énergies de la méthode d’identification de matériaux homogènes développée initialement en radiographie. Cette modalité d’imagerie permet alors l’identification de matériaux superposés. / The development of X-ray photon counting detectors based on semiconductors has grown up over the last ten years, and applications in medicine, in security and in nondestructive testing are under study. These detectors make it possible to perform measurements at multiple energies in a single acquisition, with an excellent energetic separation. Since the years 2008-2009, it seems that a real race started for the development of detectors performing multi-energetic measurements on an increasing number of energy bands. However, today, within the works already done, the interest of performing measurements on a large number of energies has not been demonstrated for material identification. As part of a study in homeland security, we assessed the interest of using Xray counting detectors that perform measurements on multiple energy bands. The considered field of interest is material identification in the luggage of travelers. We first developed an original method for identifying single materials. This method is applicable to any type of multi-energy detector. In a first time, we studied in simulation the evolution of the performance for identifying materials with the increasing number of energy bands. An optimization process was carried out to determine, for certain configurations, an optimal geometry of the energy bands.In a second step, the consequences of taking into account the detector response function were quantified by simulating different sensors effects (charge sharing, energy resolution). An experimental validation has been performed by using a counting spectrometric detector. From the measurements experimentally obtained with such a detector, combining the data allowed us to evaluate the identification performance that would have detectors possessing a different number of energy bands. Finally, we conducted a preliminary study on the transposition of the identification method initially developed for radiography to the multi-energy computed tomography. This imaging modality allows to identify superimposed materials.
|
Page generated in 0.2545 seconds